Kurs Datenbankgrundlagen und Modellierung

Sebastian Maneth, Universität Bremen maneth@uni-bremen.de

Sommersemester 2023

5.6.2023

Vorlesung 6: Normal Forms

Kurs Datenbankgrundlagen und Modellierung

```
17.4. Vorlesung 1 — Intro
24.4. V2 — ER, SQL
1.5. keine Vorlesung
4.5. Fragestunden
8.5. V3 — SQL
10.5. Ü1
11.5. Fragestunden
15.5. V4 — SQL
17.5. Ü2
22.5. V5 — SQL & funct. dependencies
24.5. Ü3
31.5. Ü4
5.6. V6 — normal forms
7.6. Ü5
```

```
12.6. V7 — modelling Intro
14.6. Ü6
19.6. V8 — class diagrams
21.6. Ü7
26.6. V9 — state charts
28.6. Ü8
3.7. V10 — sequence diagrams
5.7. Ü9
10.7. V11 — Klausurvorbereitung
```

Agenda

- 1.) Recap: Functional Dependencies
- 2.) Information and Dependency Preservation
- 3.) Third Normal Form (3NF)
- 4.) Boyce-Codd Normal Form (BCNF)
- 5.) Fourth Normal Form (4NF)

2NF removed from curriculum!

1.) Recap Functional Dependencies

Let X, Y be non-empty sets of attributes of a given table T. The functional dependency (FD) $X \rightarrow Y$ means that for any two tuples t_1, t_2 in val(T):

if
$$\pi_X(t_1) = \pi_X(t_2)$$
 then $\pi_Y(t_1) = \pi_Y(t_2)$.

"if two tuples agree on their X-values, then they also agree on their Y-values"

"the X-values determine the Y-values"

$$\pi_{X,Y}(\mathrm{val}(T))$$
 is a function from X to Y

Functional Dependencies ↔ Keys

Functional dependencies are a generalization of key constraints:

$$A_1, \ldots, A_n$$
 is a set of identifying attributes¹¹ in relation $R(A_1, \ldots, A_n, B_1, \ldots, B_m)$. "superkey" \Leftrightarrow $A_1 \ldots A_n \to B_1 \ldots B_m$ holds.

Conversely, functional dependencies can be explained with keys.

$$A_1 \dots A_n \to B_1 \dots B_m$$
 holds for R . \Leftrightarrow

 A_1, \ldots, A_n is a set of identifying attributes in $\pi_{A_1, \ldots, A_n, B_1, \ldots, B_m}(R)$.

- → Functional dependencies are "partial keys".
- → A goal of this chapter is to turn FDs into **real keys**, because key constraints can easily be enforced by a DBMS.

¹¹If the set is also minimal, A_1, \ldots, A_n is a key (\nearrow slide 53).

Functional Dependencies ↔ Keys

Why do we want to do that?

- → Functional dependencies are "partial keys".
- → A goal of this chapter is to turn FDs into real keys, because key constraints can easily be enforced by a DBMS.

¹¹If the set is also minimal, A_1, \ldots, A_n is a key (\nearrow slide 53).

Functional Dependencies ↔ Keys

Why do we want to do that?

— to remove redundancy!

- → Functional dependencies are "partial keys".
- → A goal of this chapter is to turn FDs into real keys, because key constraints can easily be enforced by a DBMS.

¹¹If the set is also minimal, A_1, \ldots, A_n is a key (\nearrow slide 53).

A functional dependency $X \rightarrow Y$ is trivial, if Y is a subset of X.

How many non-trivial FDs are there for a table with 3 columns?

A functional dependency $X \rightarrow Y$ is completely non-trivial,

if
$$X \cap Y = \emptyset$$
.

How many completely non-trivial FD for a table w. 3 columns? 12

$$ab \rightarrow c$$
 $b \rightarrow a$ Still: if $a \rightarrow b$ holds, then we **do not** $ac \rightarrow b$ $b \rightarrow c$ **care** that also $ac \rightarrow b$ holds. $bc \rightarrow a$ $b \rightarrow ac$ $a \rightarrow b$ $c \rightarrow b$ The FD $a \rightarrow b$ implies $ac \rightarrow b$ $a \rightarrow c$ $c \rightarrow a$ (and it is strictly smaller). $a \rightarrow bc$ $c \rightarrow ab$

sch(Teach) = (Course, Prof, Time)

Course	Prof		Time	9
cs101	Knuth	ļ	•	9-11
cs101	Knuth		Ť	14-16
cs311	Knuth		•	8-10
cs477	Smith		Mo,	9-11

Important assumption: each course is taught by exactty one Prof.

What are the (interesting) functional dependencies?

sch(Teach) = (Course, Prof, Time)

Course	Prof		Time	9
cs101	Knuth	ļ	Mo,	9-11
cs101	Knuth		Fr,	14-16
cs311	Knuth		Th,	8-10
cs477	Smith		Mo,	9-11

Important assumption: each course is taught by exactty one Prof.

What are the (interesting) functional dependencies of this relation?

all the completely non-trivial

Course —> Prof

Prof, Time —> Course

sch(Teach) = (Course, Prof, Time)

Course	Prof		Time	
cs101 cs101 cs311 cs477	Knuth Knuth Knuth Smith	<u> </u>	Fr, Th,	9-11 14-16 8-10 9-11

Important assumption: each course is taught by exactly one Prof.

What are the (interesting) functional dependencies of this relation?

all the completely non-trivial

Course —> Prof Course, Time —> Prof Prof, Time —> Course

sch(Teach) = (Course, Prof, Time)

Course	Prof		Time	9
cs101 cs101 cs311	Knuth Knuth Knuth	į	Fr,	9-11 14-16 8-10
	Smith	•	•	9-11

Important assumption: each course is taught by exactty one Prof.

What are the (interesting) functional dependencies?

What are the candidate keys?

sch(Teach) = (Course, Prof, Time)

Course	Prof		Time	
cs101 cs101 cs311 cs477	Knuth Knuth Knuth Smith	<u> </u>	Fr, Th,	9-11 14-16 8-10 9-11

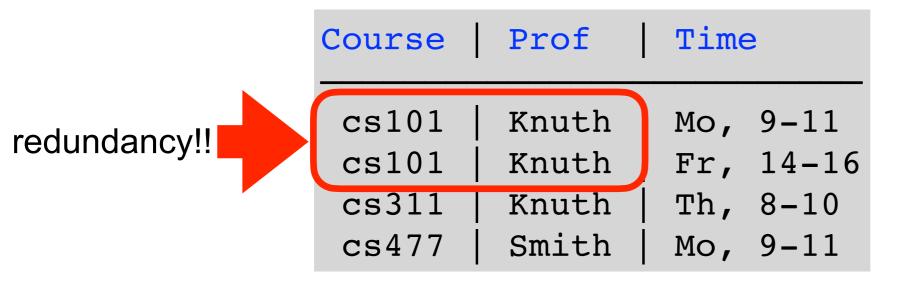
Important assumption: each course is taught by exactly one Prof.

What are the (interesting) functional dependencies?

What are the candidate keys?

- 1.) Prof, Time
- 2.) Course, Time

sch(Teach) = (Course, Prof, Time)



Important assumption: each course is taught by exactly one Prof.

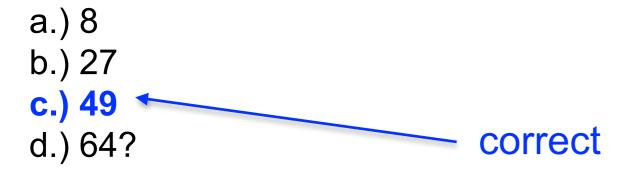
What are the (interesting) functional dependencies?

What are the candidate keys?

- 1.) Prof, Time
- 2.) Course, Time

Consider a table T with three columns: sch(T) = (A, B, C)

How many different functional dependencies exist for such a table T?



number of non-empty sets with at most 3 elements

a
b
c
ab
ac
bc
abc

7 nonempty subset
of { a, b, c}

A functional dependency $X \to Y$ is completely non-rivial,

if
$$X \cap Y = \emptyset$$
.

How many completely non-trivial FD for a table w. 3 columns? **12**

$$ab \rightarrow c$$
 $b \rightarrow a$ Still: if $a \rightarrow b$ holds, then we **do not** $ac \rightarrow b$ $b \rightarrow c$ **care** that also $ac \rightarrow b$ holds. $bc \rightarrow a$ $b \rightarrow ac$ $a \rightarrow b$ $c \rightarrow b$ The FD $a \rightarrow b$ implies $ac \rightarrow b$ $a \rightarrow c$ $c \rightarrow a$ (and it is strictly smaller). $a \rightarrow bc$ $c \rightarrow ab$

#possibleFD(n columns) = $(2^n - 1)^2$

Question:

#possibleCompletelyNon-TrivialFD(n columns) = ?

also exponential in n?

yes!

Evgenii Pavlov, MaST Mathematics, University of Cambridge (2020)

Answered September 25, 2016

There are $2^n \times 2^n$ ways to choose two subsets without imposing any restrictions and 3^n ways to choose two non-intersecting subsets (for every element we choose whether it lies in the first set, the second set or in neither of the sets). This means that there are $4^n - 3^n$ ways to choose two intersecting subsets.

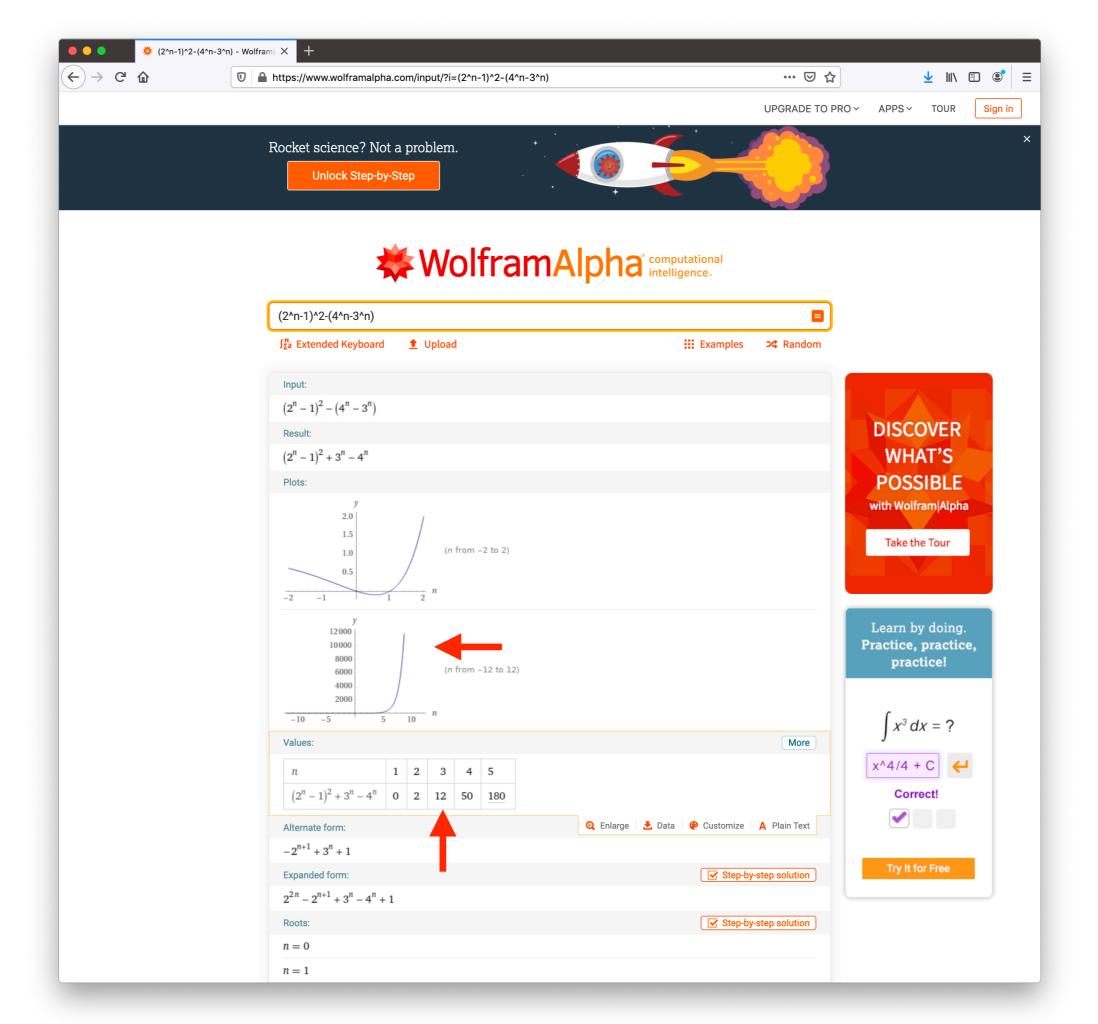
https://www.quora.com/In-how-many-ways-can-we-choose-two-subsets-from-an-n-elements-set-so-that-they-have-a-non-empty-intersection

#possibleFD(n columns) = $(2^n - 1)^2$

Question:

#possibleCompletelyNon-TrivialFD(n columns) = ?

also exponential in n?



Armstrong Axioms

■ Reflexivity: ("trivial functional dependencies")

If
$$\beta \subseteq \alpha$$
 then $\alpha \to \beta$.

Augmentation:

If
$$\alpha \to \beta$$
 then $\alpha \gamma \to \beta \gamma$.

■ Transitivity:

If
$$\alpha \to \beta$$
 and $\beta \to \gamma$ then $\alpha \to \gamma$.

$$A_1 \dots A_n \to B_1 \dots B_m$$

is **equivalent** to the *m* functional dependencies

$$A_1 \dots A_n \rightarrow B_1$$
 (1)

$$A_1 \dots A_n \rightarrow B_m$$
 (m)

- **Reflexivity:** ("trivial functional dependencies")

 If $\beta \subseteq \alpha$ then $\alpha \to \beta$.
- Augmentation:

If
$$\alpha \to \beta$$
 then $\alpha \gamma \to \beta \gamma$.

■ Transitivity:

If
$$\alpha \to \beta$$
 and $\beta \to \gamma$ then $\alpha \to \gamma$.

First, show that (#) implies (1)

Now use (#) and Transitivity!

Attribute Closure

Attribute Closure

The attribute closure $\alpha_{\mathcal{F}}^+$ can be computed as follows:

```
1 Algorithm: AttributeClosure
   Input: \alpha (a set of attributes); \mathcal{F} (a set of FDs \alpha_i \to \beta_i)
   Output: \alpha_{\mathcal{F}}^+ (all attributes functionally determined by \alpha in \mathcal{F}^+)
2 X \leftarrow \alpha;
3 repeat
4 x' \leftarrow x;
5 | foreach \alpha_i \rightarrow \beta_i \in \mathcal{F} do
              if \alpha_i \subseteq X then
             x \leftarrow x \cup \beta_i;
8 until x' = x;
9 return X;
```

Given

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare \lozenge $ABD \rightarrow GH$ entailed by \mathcal{F} ?
- \blacksquare \triangle ABD \rightarrow HJ entailed by \mathcal{F} ?

Given

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare $\textcircled{ABD} \rightarrow GH$ entailed by \mathcal{F} ?
- \blacksquare \triangle ABD \rightarrow HJ entailed by \mathcal{F} ?
 - simply compute the attribute closure of ABD
 - check if G,H is contained
 - check if HJ is containd

Given

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare $\textcircled{ABD} \rightarrow GH$ entailed by \mathcal{F} ?
- \blacksquare \triangle *ABD* \rightarrow *HJ* entailed by \mathcal{F} ?

$$\{A,B,D\}_{\mathcal{F}}^{+} \Rightarrow$$

Given

A,B "give us" C

$$\mathcal{F} = \{AB \rightarrow C \ D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare \triangle *ABD* \rightarrow *HJ* entailed by \mathcal{F} ?

$$\{A,B,D\}_{\mathcal{F}}^{+} \Rightarrow$$

Given

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare $\textcircled{ABD} \rightarrow GH$ entailed by \mathcal{F} ?

$$\{A,B,D\}_{\mathcal{F}}^{+} \Rightarrow \{A,B,D,\underline{C}\}$$

Given

D "gives us" E

$$\mathcal{F} = \{AB \rightarrow CD \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare \lozenge $ABD \rightarrow GH$ entailed by \mathcal{F} ?
- \blacksquare \triangle *ABD* \rightarrow *HJ* entailed by \mathcal{F} ?

$$\{A,B,D\}_{\mathcal{F}}^{+} \Rightarrow \{\mathsf{A},\mathsf{B},\mathsf{D},\mathsf{C}\}$$

Given

D "gives us" E

$$\mathcal{F} = \{AB \rightarrow CD \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare \lozenge $ABD \rightarrow GH$ entailed by \mathcal{F} ?
- \blacksquare \triangle ABD \rightarrow HJ entailed by \mathcal{F} ?

$$\{A, B, D\}_{\mathcal{F}}^+ \Rightarrow \{A, B, D, C\}$$

$$==> \{A, B, C, D, E\}$$

Given

A,E "give us" G

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare \lozenge $ABD \rightarrow GH$ entailed by \mathcal{F} ?
- \blacksquare \triangle ABD \rightarrow HJ entailed by \mathcal{F} ?

$$\{A, B, D\}_{\mathcal{F}}^+ \Rightarrow \{A, B, D, C\}$$

$$==> \{A, B, C, D, E\}$$

Given

A,E "give us" G

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare \triangle ABD \rightarrow HJ entailed by \mathcal{F} ?

$$\{A,B,D\}_{\mathcal{F}}^{+} \Rightarrow \{A,B,D,C\}$$

$$==> \{A,B,C,D,E\}$$

$$==> \{A,B,C,D,E,G\}$$

Given

G,D "give us" H

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare \triangle ABD \rightarrow HJ entailed by \mathcal{F} ?

$$\{A,B,D\}_{\mathcal{F}}^{+} \Rightarrow \{A,B,D,C\}$$

$$==> \{A,B,C,D,E\}$$

$$==> \{A,B,C,D,E,G\}$$

$$==> \{A,B,C,D,E,G,H\}$$

Given

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare \lozenge $ABD \rightarrow GH$ entailed by \mathcal{F} ? Yes!
- \blacksquare \triangle ABD \rightarrow HJ entailed by \mathcal{F} ?

$$\{A, B, D\}_{\mathcal{F}}^{+} \Rightarrow \{A, B, D, C\}$$

$$==> \{A, B, C, D, E\}$$

$$==> \{A, B, C, D, E, G\}$$

$$==> \{A, B, C, D, E, G, H\}$$

Given

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

- \blacksquare \lozenge $ABD \rightarrow GH$ entailed by \mathcal{F} ? Yes!
- \blacksquare \triangle ABD \rightarrow HJ entailed by \mathcal{F} ? No!

$$\{A, B, D\}_{\mathcal{F}}^+ \Rightarrow \{A, B, D, C\}$$

$$==> \{A, B, C, D, E\}$$

$$==> \{A, B, C, D, E, G\}$$

$$==> \{A, B, C, D, E, G, H\}$$

Minimal Cover

 \mathcal{F}^+ is the **maximal cover** for \mathcal{F} .

 \to \mathcal{F}^+ can be large and contain many redundant FDs. This makes \mathcal{F}^+ a poor basis to study a relational schema.

Thus: Construct a **minimal cover** \mathcal{F}^- such that

- 1 $\mathcal{F}^- \equiv \mathcal{F}$, i.e., $(\mathcal{F}^-)^+ = \mathcal{F}^+$.
- 2 All functional dependencies in \mathcal{F}^- have the form $\alpha \to X$ (*i.e.*, the right side is a single attribute).
- In $\alpha \to X \in \mathcal{F}^-$, no attributes in α are redundant:

$$\forall A \in \alpha : (\mathcal{F}^- - \{\alpha \to X\} \cup \{(\alpha - A) \to X\}) \not\equiv \mathcal{F}^-$$
.

4 No rule $\alpha \to X$ is redundant in \mathcal{F}^- :

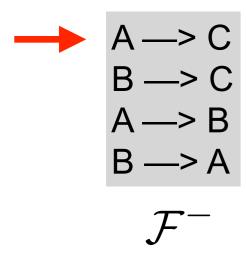
$$\forall \alpha \to X \in \mathcal{F}^- : (\mathcal{F}^- - \{\alpha \to X\}) \not\equiv \mathcal{F}^-$$
.

To construct the minimal cover \mathcal{F}^- :

- 1 $\mathcal{F}^- \leftarrow \mathcal{F}$ where all functional dependencies are converted to have only one attribute on the right side.
- **Remove redundant attributes** from the left-hand sides of functional dependencies in \mathcal{F}^- :
 - foreach $\alpha \to X \in \mathcal{F}^-$ do

 foreach $A \in \alpha$ do

 if $X \in (\alpha A)^+_{\mathcal{F}^-}$ then A redundant in α ? Remove it. $\mathcal{F}^- \leftarrow \mathcal{F}^- \{\alpha \to X\} \cup \{(\alpha A) \to X\};$
- **3 Remove redundant functional dependencies** from \mathcal{F}^- :
 - 1 foreach $\alpha \to X \in \mathcal{F}^-$ do 2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then 3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;



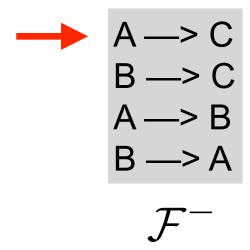
1.) check if first FD can be removed

A —> C 1.) check if first FD can be removed B —> C A —> B (
$$\mathcal{F}^- - \{A \to C\}) \stackrel{?}{\equiv} \mathcal{F}^-$$

how can we check this?

— any ideas?

1 foreach
$$\alpha \to X \in \mathcal{F}^-$$
 do
2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then
3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;



1.) check if first FD can be removed

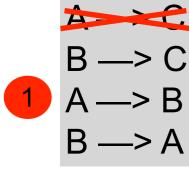
A —> C 1.) check if first FD can be removed B —> C A —> B
$$(\mathcal{F}^- - \{A \to C\}) \stackrel{?}{\equiv} \mathcal{F}^-$$

how can we check this?

check if C is in the attribute closure of A under the reduced set of FDs!

$$C \in \{A\}_{\mathcal{F}^- - \{A \to C\}}^+$$

1 foreach
$$\alpha \to X \in \mathcal{F}^-$$
 do
2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then
3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;



1.) check if first FD can be removed

1
$$A \longrightarrow C$$
 $A \longrightarrow B$ $(\mathcal{F}^{-} - \{A \to C\}) \stackrel{?}{=} \mathcal{F}^{-}$

 $(\mathcal{F}^- - \{A \to C\})$

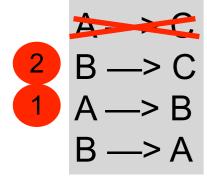
how can we check this?

 check if C is in the attribute closure of A under the reduced set of FDs!

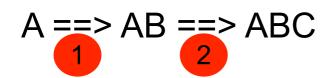
$$C \in \{A\}_{\mathcal{F}^- - \{A \to C\}}^+$$

Remove redundant functional dependencies from \mathcal{F}^- :

1 foreach $\alpha \to X \in \mathcal{F}^-$ do if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then з $\mid \quad \mid \quad \mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \rightarrow X\}$;



$$(\mathcal{F}^- - \{A \to C\})$$

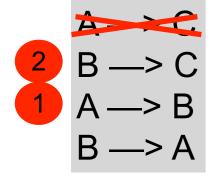


how can we check this?

 check if C is in the attribute closure of A under the reduced set of FDs!

$$C \stackrel{?}{\in} \{A\}_{\mathcal{F}^- - \{A \to C\}}^+$$

1 foreach
$$\alpha \to X \in \mathcal{F}^-$$
 do
2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then
3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;



1.) check if first FD can be removed

$$\begin{array}{c} \mathbf{2} & \mathbf{B} \longrightarrow \mathbf{C} \\ \mathbf{1} & \mathbf{A} \longrightarrow \mathbf{B} \end{array} \qquad (\mathcal{F}^{-} - \{A \rightarrow C\}) \stackrel{?}{\equiv} \mathcal{F}^{-} \end{array}$$

 $(\mathcal{F}^- - \{A \to C\})$

A ==> AB ==> ABC

how can we check this?

 check if C is in the attribute closure of A under the reduced set of FDs!

Yes!
$${}^{?}C \in \{A\}^{+}_{\mathcal{F}^{-}-\{A \rightarrow C\}}$$

1 foreach
$$\alpha \to X \in \mathcal{F}^-$$
 do
2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then
3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;

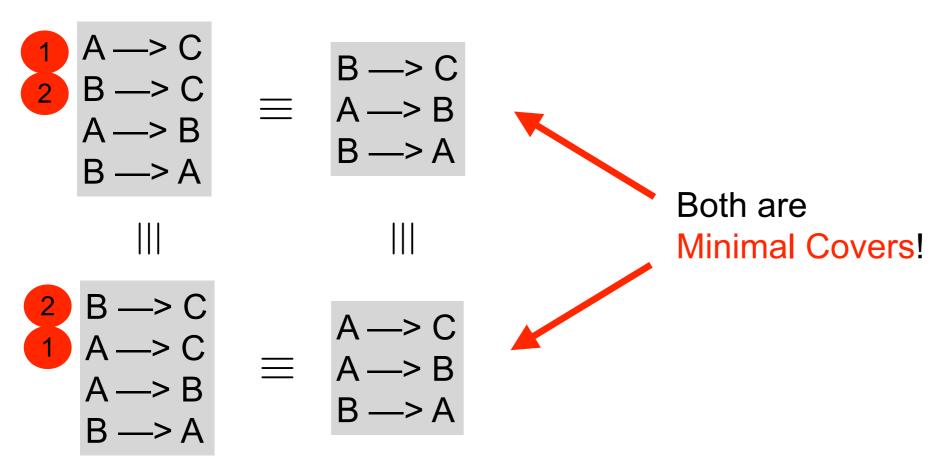
1 foreach
$$\alpha \to X \in \mathcal{F}^-$$
 do
2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then
3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;

first two rules interchanged

1 foreach
$$\alpha \to X \in \mathcal{F}^-$$
 do
2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then
3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;

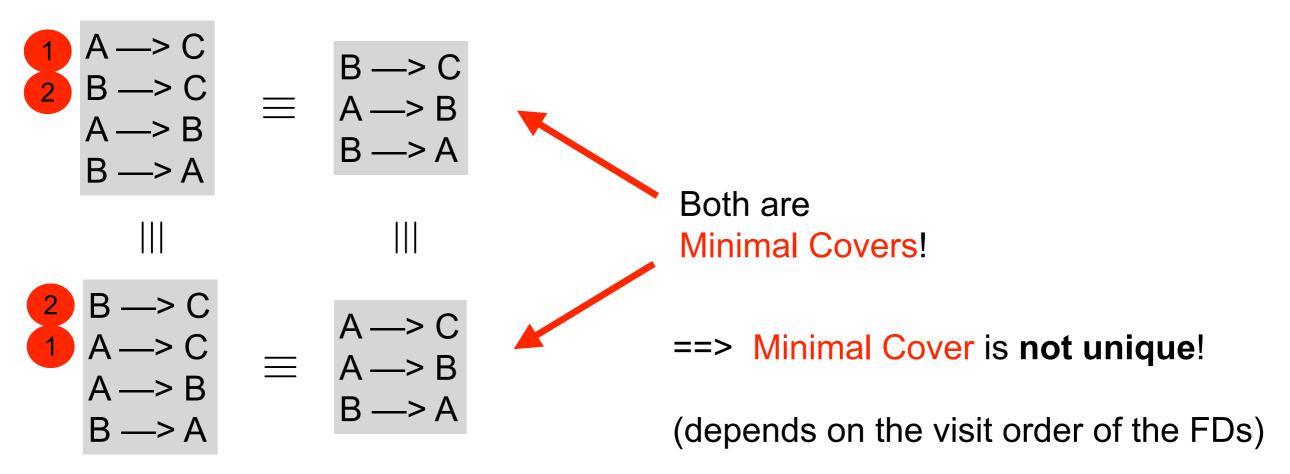
first two rules interchanged

1 foreach
$$\alpha \to X \in \mathcal{F}^-$$
 do
2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then
3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;



first two rules interchanged

1 foreach
$$\alpha \to X \in \mathcal{F}^-$$
 do
2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then
3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;



first two rules interchanged

1 foreach
$$\alpha \to X \in \mathcal{F}^-$$
 do
2 | if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then
3 | $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;

To construct the minimal cover \mathcal{F}^- :

- 1 $\mathcal{F}^- \leftarrow \mathcal{F}$ where all functional dependencies are converted to have only one attribute on the right side.
- **Remove redundant attributes** from the left-hand sides of functional dependencies in \mathcal{F}^- :
 - 1 foreach $\alpha \to X \in \mathcal{F}^-$ do
 2 foreach $A \in \alpha$ do
 3 if $X \in (\alpha A)^+_{\mathcal{F}^-}$ then A redundant in α ? Remove it.
 4 $\mathcal{F}^- \leftarrow \mathcal{F}^- \{\alpha \to X\} \cup \{(\alpha A) \to X\};$
- **Remove redundant functional dependencies** from \mathcal{F}^- :
 - 1 foreach $\alpha \to X \in \mathcal{F}^-$ do 2 if $(\mathcal{F}^- - \{\alpha \to X\}) \equiv \mathcal{F}^-$ then 3 $\mathcal{F}^- \leftarrow \mathcal{F}^- - \{\alpha \to X\}$;

Note: for Steps 2 and 3, all you need is the attribute closure!

Minimal cover for the following FDs?

$$ABH \rightarrow C$$
 $F \rightarrow AD$ $C \rightarrow E$ $E \rightarrow F$ $A \rightarrow D$ $BGH \rightarrow F$ $BH \rightarrow E$

$$F \rightarrow AD$$

$$C \rightarrow C$$

$$E \rightarrow F$$

Homework

—> try to solve this on your own!

Will be discussed on Wednesday (Übung / Exercises).

ISBN	Title	Author
1-55860-570-3	Managing Gigabytes	Witten
1-55860-570-3	Managing Gigabytes	Moffat
1-55860-570-3	Managing Gigabytes	Bell
0-387-98210-8	Graph Theory	Diestel

fact stored more than once

We will remove redundancy, by **decomposing** a table into several new tables.

ISBN	Title	Author
1-55860-570-3	Managing Gigabytes	Witten
1-55860-570-3	Managing Gigabytes	Moffat
1-55860-570-3	Managing Gigabytes	Bell
0-387-98210-8	Graph Theory	Diestel

<u>ISBN</u>	Title
1-55860-570-3	Managing Gigabytes

<u>ISBN</u>	Author
1-55860-570-3 1-55860-570-3 1-55860-570-3	Moffat

Schema Decomposition

the previous

As illustrated by example on **slide** redundancy can be eliminated by **decomposing** a schema into a collection of schemas:

$$(\operatorname{sch}(R), \mathcal{F}) \rightsquigarrow (\operatorname{sch}(R_1), \mathcal{F}_1), \ldots, (\operatorname{sch}(R_n), \mathcal{F}_n)$$
.

The corresponding relations can be obtained by **projecting** on columns of the original relation:

$$R_i = \pi_{\operatorname{sch}(R_i)} R$$
.

While decomposing a schema, we do **not** want to **lose information**.

Lossless and Lossy Decompositions

A decomposition is **lossless** if the original relation can be **reconstructed** from the decomposed tables **via natural joins**:

$$R = R_1 \bowtie \cdots \bowtie R_n$$
.

decomposition has lossless-join property

ISBN	Title	Author
1-55860-570-3	Managing Gigabytes	Witten
1-55860-570-3	Managing Gigabytes	Moffat
1-55860-570-3	Managing Gigabytes	Bell
0-387-98210-8	Graph Theory	Diestel

<u>ISBN</u>	Title
1-55860-570-3	Managing Gigabytes
0-387-98210-8	Graph Theory

<u>ISBN</u>	Author
1-55860-570-3 1-55860-570-3	Moffat
1-55860-570-3 0-387-98210-8	

Dependency-Preserving Decompositions

For a lossless decomposition of R, it would always be possible to **re-construct** R and check the original set of FDs \mathcal{F} over the re-constructed table.

- → But re-construction is expensive.
- \rightarrow We'd rather like to guarantee that FDs $\mathcal{F}_1, \ldots, \mathcal{F}_n$ over decomposed tables R_1, \ldots, R_n entail all FDs in \mathcal{F} .

A decomposition is **dependency-preserving** if

$$\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_n \equiv \mathcal{F}$$
.

Example

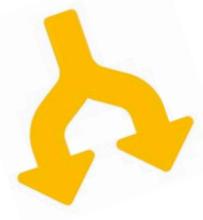
sch(Teach) = (Course, Prof, Time)

Course	Prof	Time
cs101	Knuth	Mo, 9-11
cs101	Knuth	Fr, 14-16
cs311	Knuth	Th, 8-10
cs477	Smith	Mo, $9-11$

Course —> Prof

Prof, Time —> Course

decompose



Course | Prof

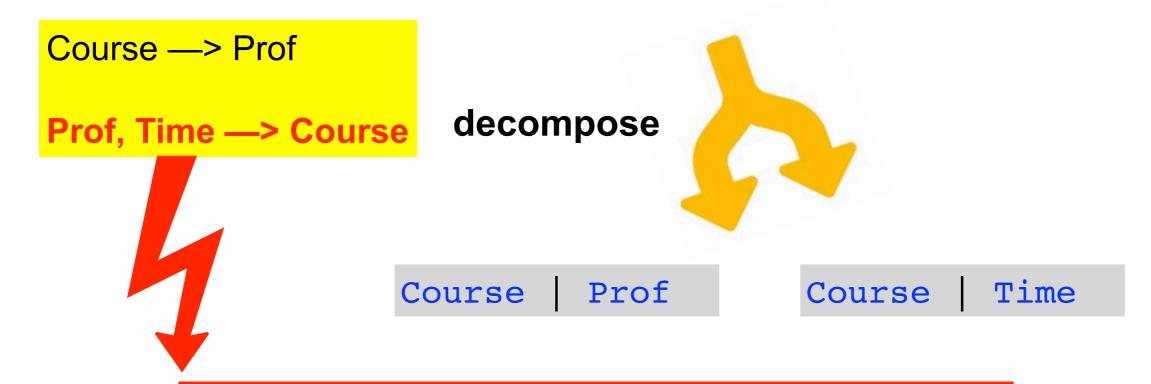
Course

Time

Example

sch(Teach) = (Course, Prof, Time)

Course	Prof	Time	9
cs101	Knuth	Mo,	9-11
cs101	Knuth	Fr,	14-16
cs311	Knuth	Th,	8-10
cs477	Smith	Mo,	9-11



- decomposition is **not** dependency preserving!
- the dependency (Prof, Time —> Course) is lost!

Decomposing A Schema

When decomposing a schema, we obtain schemas by **projecting** on columns of the original relation (\nearrow slide 237):

$$R_i = \pi_{\operatorname{sch}(R_i)} R$$
.

How do we obtain the corresponding functional dependencies?

$$\mathcal{F}_i := \pi_{\mathsf{sch}(R_i)} \mathcal{F} := \{ \alpha \to \beta \mid \alpha \to \beta \in \mathcal{F}^+ \text{ and } \alpha\beta \subseteq \mathsf{sch}(R_i) \}$$

 \rightarrow We call this the **projection** of the set \mathcal{F} of functional dependencies on the set of attributes $\mathrm{sch}(R_i)$.

Lemma

Let I be an instance over U satisfying $X \to Y$. Then $I = \pi_{XY}(I) \bowtie \pi_{XZ}(I)$ with Z = U - XY.

X	Y	Z		X	V	X	Z
				11	1		
			<u> </u>				

$$U = \{ X, Y, Z \}$$

Redundancy

Relation Schema R with functional dependency $X \rightarrow A$ has **fd-redundancy** (with respect to $X \rightarrow A$) if

- (1) there exists a db instance D over R that satisfies $X \rightarrow A$
- (2) there exist two distinct tuples in D that have equal (X, A)-values.

3.) Third Normal Form

Definition of 3NF

Whenever $X \rightarrow A$ is a nontrivial FD that holds, then either

- X is a superkey or
- A is a prime attribute.

Definition of 3NF

Whenever $X \rightarrow A$ is a nontrivial FD that holds, then either

- X is a superkey or
- A is a prime attribute.

Candidate Key: { BuildingID }

Example (Not in 3NF)

Schema → {BuildingID, Contractor, Fee}

- 1. BuildingID → Contractor
- 2. Contractor → Fee
- 3. BuildingID \rightarrow Fee

BuildingID	Contractor	Fee
100	Randolph	1200
150	Ingersoll	1100
200	Randolph	1200
250	Pitkin	1100
300	Randolph	1200

Definition of 3NF

Whenever $X \rightarrow A$ is a nontrivial FD that holds, then either

- X is a superkey or
- A is a prime attribute.

Example (Not in 3NF)

Schema → {BuildingID, Contractor, Fee}

- 1. BuildingID → Contractor
- 2. Contractor → Fee
- 3. BuildingID → Fee
- 4. Both Contractor and Fee depend on the entire key hence 2NF

<u>BuildingID</u>	Contractor	Fee
100	Randolph	1200
150	Ingersoll	1100
200	Randolph	1200
250	Pitkin	1100
300	Randolph	1200

violation of 3NF!

Decomposition into 3NF

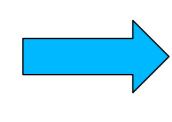
Definition of 3NF

Whenever $X \rightarrow A$ is a nontrivial FD that holds, then either

- X is a superkey or
- A is a prime attribute.
- (1) compute a minimal cover C of the set F of FDs that hold
- (2) for each FD X→A in C, create a new table and choose X as primary key
- (3) if none of the new tables contains any candidate key K of the original table, then add a new table with exactly the columns of K
- (4) remove redundant tables (that are contained in others)
 - all FDs in C are preserved in the new tables (and the lossless join property holds)!!

- (1) compute a minimal cover **C** of the set **F** FDs that hold
- (2) for each FD X→A in C, create a new table and choose X as primary key

<u>BuildingID</u>	Contractor	Fee
100	Randolph	1200
150	Ingersoll	1100
200	Randolph	1200
250	Pitkin	1100
300	Randolph	1200



<u>BuildingID</u>	Contractor
100	Randolph
150	Ingersoll
200	Randolph
250	Pitkin
300	Randolph

Contractor	Fee
Randolph	1200
Ingersoll	1100
Pitkin	1100

Tournament Winners

<u>Tournament</u>	Year	Winner	Winner Date of Birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977

→ do you see any redundancy?

Definition of 3NF

Whenever X —> A is a nontrivial FD that holds, then either

- X is a superkey or
- A is a prime attribute.

Tournament Winners

<u>Tournament</u>	<u>Year</u>	Winner	Winner Date of Birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977

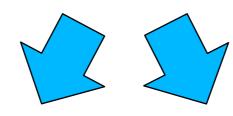
→ do you see any redundancy?

Tournament Winners

<u>Tournament</u>	<u>Year</u>	Winner	Winner Date of Birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977

Tournament Winners

<u>Tournament</u>	Year	Winner	Winner Date of Birth
Indiana Invitational	1998	Al Fredrickson	21 July 1975
Cleveland Open	1999	Bob Albertson	28 September 1968
Des Moines Masters	1999	Al Fredrickson	21 July 1975
Indiana Invitational	1999	Chip Masterson	14 March 1977



Tournament Winners

Winner Dates of Birth

<u>Tournament</u>	Year	Winner	
Indiana Invitational	1998	Al Fredrickson	(
Cleveland Open	1999	Bob Albertson	1
Des Moines Masters	1999	Al Fredrickson	I
Indiana Invitational	1999	Chip Masterson	

<u>Winner</u>	Date of Birth
Chip Masterson	14 March 1977
Al Fredrickson	21 July 1975
Bob Albertson	28 September 1968

Question: can there still be redundancy wrt a FD

in a table that is in 3NF?

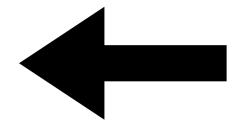
Third Normal Form (3NF)

Question: can there still be redundancy wrt a FD

in a table that is in 3NF?

Course	Prof	Time
cs101	Knuth	Mo, 9-11
cs101	Knuth	Fr, 14-16
cs311	Knuth	Th, 8-10
cs477	Smith	Mo, 9-11

Course —> Prof
Course, Time —> Prof
Prof, Time —> Course



Is this relation in 3NF?

Definition of 3NF

Whenever $X \rightarrow A$ is a nontrivial FD that holds, then either

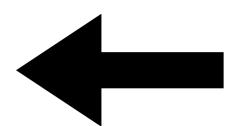
- X is a superkey or
- A is a prime attribute.

Third Normal Form (3NF)

Question: can there still be redundancy wrt a FD in a table that is in 3NF?

Course	Prof	Time
cs101	Knuth	Mo, 9-11
cs101	Knuth	Fr, 14-16
cs311	Knuth	Th, 8-10
cs477	Smith	Mo, 9-11

Course —> Prof
Course, Time —> Prof
Prof, Time —> Course



Is this relation in 3NF? Yes, it is in 3NF!

Definition of 3NF

Whenever $X \rightarrow A$ is a nontrivial FD that holds, then either

- X is a superkey or
- A is a prime attribute.

A table R is in BCNF, if for any dependency $X \rightarrow Y$ at least one of the following holds

- \rightarrow (X \rightarrow Y) is trivial (i.e., Y is a subset of X)
- → X is a superkey for R.

(by Boyce and Codd 1974)

→ BCNF does **not** allow dependencies between prime attributes!

BCNF = "3NF + no dependencies between (distinct) prime attributes"

A table R is in BCNF, if for any dependency $X \rightarrow Y$ at least one of the following holds

- \rightarrow (X \rightarrow Y) is trivial (i.e., Y is a subset of X)
- → X is a superkey for R.

(by Boyce and Codd 1974)

→ BCNF does **not** allow dependencies between prime attributes!

BCNF = "3NF + no dependencies between (distinct) prime attributes"

"... the key, the whole key, and nothing but the key, so help me Codd."

A table R is in BCNF, if for any dependency $X \rightarrow Y$ at least one of the following holds

- \rightarrow (X \rightarrow Y) is trivial (i.e., Y is a subset of X)
- → X is a superkey for R.

(by Boyce and Codd 1974)

Example (Not in BCNF)

Schema { ISBN, Title, Author }

BCNF = "3NF + no dependencies between (distinct) prime attributes"

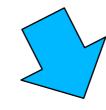
- FD: ISBN → Title
- ISBN is not super key

ISBN	Title	Author
1-55860-570-3	Managing Gigabytes	Witten
1-55860-570-3	Managing Gigabytes	Moffat
1-55860-570-3	Managing Gigabytes	Bell
0-387-98210-8	Graph Theory	Diestel

Bring table R into BCNF:

- → Place two candidate primary keys into separate tables
- → Place items in either of the tables, according to their dependencies on the keys
- → show how BCNF removes redundancy!

ISBN	Title	Author
1-55860-570-3	Managing Gigabytes	Witten
1-55860-570-3	Managing Gigabytes	Moffat
1-55860-570-3	Managing Gigabytes	Bell
0-387-98210-8	Graph Theory	Diestel



ISBN	Title
1-55860-570-3	Managing Gigabytes
0-387-98210-8	Graph Theory

ISBN	Author
1-55860-570-3	Witten
1-55860-570-3	Moffat
1-55860-570-3	Bell
0-387-98210-8	Diestel

A table R is in BCNF, if for any dependency $X \rightarrow Y$ at least one of the following holds

- \rightarrow (X \rightarrow Y) is trivial (i.e., Y is a subset of X)
- \rightarrow X is a superkey for R.

Course	Prof	Time
cs101	Knuth	Mo, 9-11
cs101	Knuth	Fr, 14-16
cs311	Knuth	Th, 8-10
cs477	Smith	Mo, 9-11

Is it in BCNF?

Course -> Prof

Prof, Time —> Course

A table R is in BCNF, if for any dependency $X \rightarrow Y$ at least one of the following holds

- \rightarrow (X \rightarrow Y) is trivial (i.e., Y is a subset of X)
- \rightarrow X is a superkey for R.

Course	Prof	Time
cs101	Knuth	Mo, 9-11
cs101	Knuth	Fr, 14-16
cs311	Knuth	Th, 8-10
cs477	Smith	Mo, 9-11

Is it in BCNF?

No!

Course —> Prof

Prof, Time —> Course

Algorithm for BCNF Decomposition

BCNF can be obtained by repeatedly **decomposing** a table **along an FD that violates BCNF**:

```
Algorithm: BCNFDecomposition

Input: (\operatorname{sch}(R), \mathcal{F})
Output: Schema \{(\operatorname{sch}(R_1), \mathcal{F}_1), \dots, (\operatorname{sch}(R_n), \mathcal{F}_n)\} in BCNF

Decomposed \leftarrow \{(\operatorname{sch}(R), \mathcal{F})\};

while \exists (\operatorname{sch}(S), \mathcal{F}_S) \in Decomposed that is not in BCNF do

Let \alpha \to \beta be an FD in \mathcal{F}_S that violates BCNF;

Decompose S into S_1(\alpha\beta) and S_2((S-\beta)\cup\alpha);

return Decomposed;
```

Algorithm for BCNF Decomposition

BCNF can be obtained by repeatedly **decomposing** a table **along an FD that violates BCNF**:

```
Algorithm: BCNFDecomposition

Input: (\operatorname{sch}(R), \mathcal{F})
Output: Schema \{(\operatorname{sch}(R_1), \mathcal{F}_1), \ldots, (\operatorname{sch}(R_n), \mathcal{F}_n)\} in BCNF

Decomposed \leftarrow \{(\operatorname{sch}(R), \mathcal{F})\};

while \exists (\operatorname{sch}(S), \mathcal{F}_S) \in Decomposed that is not in BCNF do

Let \alpha \to \beta be an FD in \mathcal{F}_S that violates BCNF;

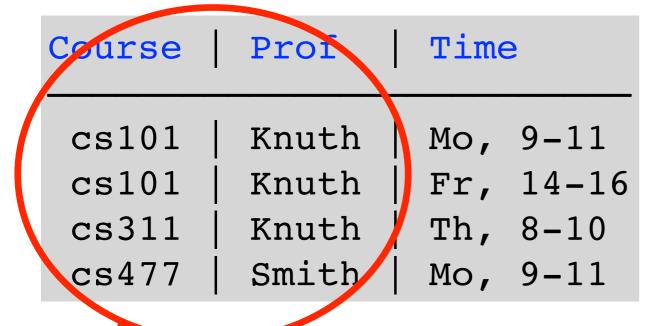
Decompose S into S_1(\alpha\beta) and S_2((S-\beta) \cup \alpha);

return Decomposed;
```

Notes: (1) This decomposition has the lossless-join property (= information preserving) (2) But, it **may not** be dependency preserving!

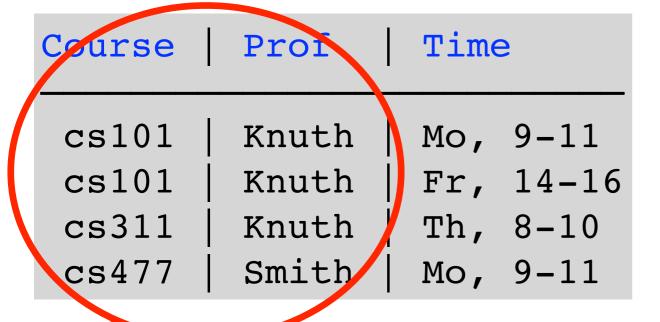
Course	Prof	Time	9
cs101	Knuth	Mo,	9-11
cs101	Knuth	Fr,	14-16
cs311	Knuth	Th,	8-10
cs477	Smith	Mo,	9-11

Course —> Prof



Course —> Prof

Course		Prof
cs101 cs311 cs477	_ 	Knuth Knuth Smith



Course —> Prof
violates BCNF

Prof, Time —> Course

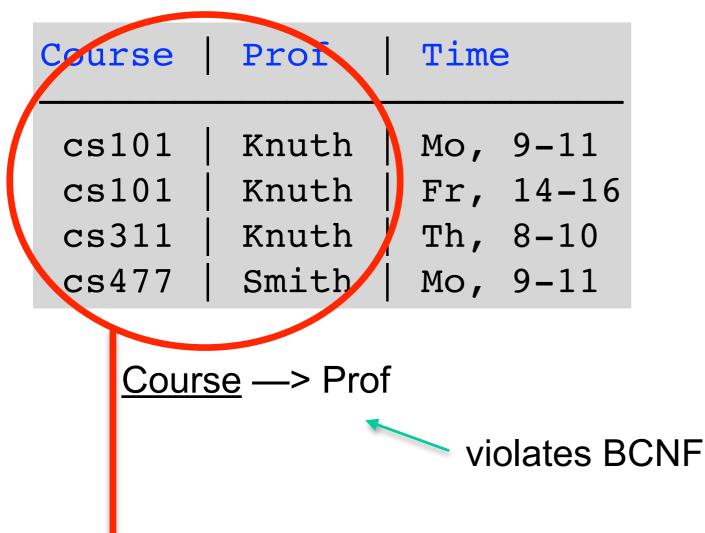
is **lost** in new tables!!

— cannot easily enforce this dependency anymore :-((

In the old table, **Prof** is removed!

Course		Prof
cs101	ļ	Knuth
cs311		Knuth
cs477		Smith

Course	<u>Time</u>
cs101 cs101 cs311 cs477	Fr, 14-16 Th, 8-10



Prof, Time —> Course

is **lost** in new tables!!

— cannot easily enforce this dependency anymore :-((

In the old table, **Prof** is removed!

Course		Prof
cs101 cs311 cs477	 	Knuth Knuth Smith

Course	Time	<u> </u>
cs101	Mo,	9-11
cs101	Fr,	14-16
cs311	Th,	8-10
cs477	Mo,	9-11

Question: in MySQL/PostgreSQL, how to enforce (prof,time —> course) on the tables?

A table R is in BCNF, if for any dependency $X \rightarrow Y$ at least one of the following holds

- \rightarrow (X \rightarrow Y) is trivial (i.e., Y is a subset of X)
- → X is a superkey for R.

(by Boyce and Codd 1974)

Good News

Lemma If R is a relation schema in BCNF then there are <u>no fd-redundancies</u> in R.

A table R is in 4NF, if for every multi-valued dependency (mvd) X -->> Y,

- → (X -->> Y) is trivial (i.e., Y is a subset of X)
- → X is a superkey for R

[Fagin, 1977]

R has multi-valued dependency (mvd) X -->> Y

If two tuples agree on all attributes in X, then their Y-values may be swapped, and the resulting two tuples must in R as well.

Note $X \rightarrow Y$ implies $X \rightarrow Y$.

A table R is in 4NF, if for every multi-valued dependency (mvd) X -->> Y,

- \rightarrow (X -->> Y) is trivial (i.e., Y is a subset of X)
- → X is a superkey for R

[Fagin, 1977]

Example (Not in 4NF)

Schema → {Movie, ScreeningCity, Genre)

Primary Key: (Movie, ScreeningCity, Genre)

- 1. All columns are a part of the only candidate key, hence BCNF
- 2. Many Movies can have the same Genre
- 3. Many Cities can have the same movie
- 4. A Movie can have several Genres
- Violates 4NF

Movie -->> ScreeningCity
Movie -->> Genre

<u>Movie</u>	ScreeningCity	<u>Genre</u>
Hard Code	Los Angles	Comedy
Hard Code	New York	Comedy
Bill Durham	Santa Cruz	Drama
Bill Durham	Durham	Drama
The Code Warrier	New York	Horror
The Code Warrier	New York	Sci-Fi

Example 2 (Not in 4NF)

Schema → {Manager, Child, Employee}

- 1. Primary Key → {Manager, Child, Employee}
- 2. Each manager can have more than one child
- 3. Each manager can supervise more than one employee
- 4. 4NF Violated

Manager	Child	Employee
Jim	Beth	Alice
Mary	Bob	Jane
Mary	Bob	Adam

Manager -->> Child Manager -->> Employee

Example 3 (Not in 4NF)

Schema → {Employee, Skill, ForeignLanguage}

- 1. Primary Key → {Employee, Skill, Language }
- 2. Each employee can speak multiple languages
- 3. Each employee can have multiple skills
- 4. Thus violates 4NF

Employee	Skill	Language
1234	Cooking	French
1234	Cooking	German
1453	Carpentry	Spanish
1453	Cooking	Spanish
2345	Cooking	Spanish

Bring a BCNF table into 4NF:

- → Move the two multi-valued sub-relations into separate tables
- → Identify primary keys for each new table.

Example 1 (Convert to 4NF)

Old Schema → {MovieName, ScreeningCity, Genre}

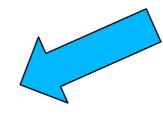
New Schema → {MovieName, ScreeningCity}

New Schema → {MovieName, Genre}

Movie	ScreeningCity	Genre
Hard Code	Los Angles	Comedy
Hard Code	New York	Comedy
Bill Durham	Santa Cruz	Drama
Bill Durham	Durham	Drama
The Code Warrier	New York	Horror
The Code Warrier	New York	Sci-Fi

Movie	Genre
Hard Code	Comedy
Bill Durham	Drama
The Code Warrier	Horror
The Code Warrier	Sci-Fi

Movie	ScreeningCity
Hard Code	Los Angles
Hard Code	New York
Bill Durham	Santa Cruz
Bill Durham	Durham
The Code Warrier	New York



Example 2 (Convert to 4NF)

Old Schema → {Manager, Child, Employee}

New Schema → {Manager, Child}

New Schema → {Manager, Employee}

Manager	Child
Jim	Beth
Mary	Bob

Manager	Employee
Jim	Alice
Mary	Jane
Mary	Adam

Example 3 (Convert to 4NF)

Old Schema → {Employee, Skill, ForeignLanguage}

New Schema → {Employee, Skill}

New Schema → {Employee, ForeignLanguage}

Employee	Skill
1234	Cooking
1453	Carpentry
1453	Cooking
2345	Cooking

Employee	Language
1234	French
1234	German
1453	Spanish
2345	Spanish

Do not underestimate importance of 4NF:

→ [Wu 1992] of real word databases, 20% were **NOT** in 4NF!

(all of them were in 3NF)

The Practical Need for Fourth Normal Form

Margaret S. Wu 425 Beldon Ave Iowa City, Iowa 52246 Phone: (319) 335-0846

ABSTRACT

Many practitioners and academicians believe that data violating fourth normal form is rarely encountered. We report upon a study of forty organizational databases; nine of them contained data violating fourth normal form. Consequently, the need to understand and use fourth normal form is more important than previously believed.

INTRODUCTION

A paramount issue in the design of any database is what data fields should be grouped together into records. In the relational model, the data fields are grouped into logical structures called relations. The determination of which data fields are placed together in a relation is based upon the concept of <u>normal forms</u>; the process is known as <u>normalization</u>. The set of data fields comprising the database is progressively organized into relations in first

that the relation has no modification anomalies.

There is some evidence that academicians view fourth normal form (4NF) as unimportant and thus may neglect the topic in database management courses in MIS.

Stamper and Price in [10] state that "fourth and fifth normal forms are so rarely encountered in business applications as to be almost obscure; hence, they are not described in this book." Mittra [8] states that "Although

Author: Margaret S. Wu 425 Beldon Ave, Iowa City, Iowa

Published in:

· Pro

SIGCSE '92 Proceedings of the twenty-third SIGCSE technical symposium on Computer science education

Pages 19-23

Kansas City, Missouri, USA — March 05 - 06, 1992 <u>ACM</u> New York, NY, USA ©1992 <u>table of contents</u> ISBN:0-89791-468-6 doi>10.1145/134510.134515

Newsletter
 ACM SIGCSE Bulletin Homepage
 Volume 24 Issue 1, March 1992
 Pages 19-23
 ACM New York, NY, USA

table of contents doi>10.1145/135250.134515

Redundancy

Relation Schema R with multi-valued dependency X -->> A has <u>mvd-redundancy</u> (with respect to X -->> A) if

- (1) there exists a db instance D over R that satisfies X -->> A
- (2) there exist two distinct tuples in D that have equal (X, A)-values.

Good News

Lemma If R is a relation schema in 4NF, then there are no mvd-redundencies in R

