Lecturer: Alexander Lindermayr

Introduction to Matroids

In this and the next lecture, we introduce matroids and learn how they characterize problems that can be solved by a greedy algorithm.

But first, we start by recalling the problem of finding a minimum spanning tree (MST) in a graph. We have seen that the problem can be solved using Kruskal's algorithm, which is a greedy algorithm. Formally, we are given an undirected graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, and we want to find a spanning tree $T \subseteq E$ of G that minimizes the total weight $\sum_{e \in T} w(e)$.

Algorithm 1: Kruskal's algorithms

```
\begin{array}{ll} \mathbf{1} & F \leftarrow \emptyset \\ \mathbf{2} & \mathbf{for} \ e \in E \ sorted \ ascending \ by \ w(e) \ \mathbf{do} \\ \mathbf{3} & | & \mathbf{if} \ F \cup \{e\} \ is \ acyclic \ \mathbf{then} \\ \mathbf{4} & | & | F \leftarrow F \cup \{e\} \\ \mathbf{5} & \mathbf{return} \ F \end{array}
```

Kruskal's Greedy algorithm finds an MST for every weight function w. In particular, it also works for the analogue maximization problem, where we want to find a spanning tree that maximizes the total weight $\sum_{e \in T} w(e)$.

In this lecture, we want to understand for which kind of problems this type of greedy algorithm computes an optimal solution:

- Consider elements greedily one-by-one.
- Add an element to the solution if it maintains feasibility.

A first observation is that there exists a polynomial-time solvable problem for which this algorithm does compute an optimal solution: the maximum bipartite matching problem. Here, greedily adding edges to our matching does not necessarily lead to a maximum matching. This raises the following question:

Which properties guarantee that the Greedy algorithm computes an optimal solution?

To answer this question, we first introduce definitions to abstract many problems in combinatorial optimization.

Definition 1 (Independence System). Let E be a ground set. A set system $\mathcal{I} \subseteq 2^E$ is called independence system if

- (i) $\emptyset \in \mathcal{I}$, and
- (ii) for all $A \in \mathcal{I}$ and $B \subseteq A$, we have $B \in \mathcal{I}$.

A set $A \subseteq E$ is called independent if $A \in \mathcal{I}$, and dependent if $A \notin \mathcal{I}$. Minimal dependent sets are called circuits, and maximal independent sets are called bases.

For some set $A \subseteq E$, we call a maximum independent subset of A a basis of A.

Using the notion of independence systems, we can reformulate many known combinatorial optimization problems in this language: Given an independence system (E, \mathcal{I}) and a weight function $w: E \to \mathbb{R}$, find $I \in \mathcal{I}$ that maximizes / minimizes $w(I) := \sum_{e \in I} w(e)$.

We have seen many examples of such problems:

- Minimum spanning tree: w(e) is the weight of edge e, and $\mathcal{I} = \{I \subseteq E \mid I \text{ forest}\}.$
- Maximum matching: w(e) = 1, and $\mathcal{I} = \{I \subseteq E \mid I \text{ matching}\}.$
- Knapsack: w(e) is the value of item e, and $\mathcal{I} = \{I \subseteq E \mid \sum_{e \in I} w(e) \leq B\}$ for some capacity B.
- Maximum weight independent set: w(v) is the weight of vertex v, and $\mathcal{I} = \{I \subseteq V \mid I \text{ is independent in } G\}.$

While all of these problems are optimization problems over independence systems, we will see that exactly those can be solved by the greedy algorithm that are a *matroid*.

Definition 2 (Matroid). An independence system (E, \mathcal{I}) is called a matroid if

(iii) for all $A, B \in \mathcal{I}$ with |A| < |B|, there exists an element $b \in B \setminus A$ such that $A \cup \{b\} \in \mathcal{I}$.

Property (iii) is also called *augmentation property*. This property is crucial for the greedy algorithm to work.

Hence, a set system (E,\mathcal{I}) is a matroid if it satisfies (i), (ii), and (iii). Note that (ii) implies (i) as long as $\mathcal{I} \neq \emptyset$; we add (i) to rule out that (E,\emptyset) is a matroid.

1 Standard Matroids

1.1 Uniform Matroids

Let E be a universe and let $k \in \mathbb{N}$. Define

$$\mathcal{I} = \{ I \subseteq E \mid |I| \le k \}.$$

Theorem 1. $\mathcal{M} = (E, \mathcal{I})$ is a matroid (called a uniform matroid).

Proof. Properties (i) and (ii) clearly hold. We now show the augmentation property (iii). Let $A, B \in \mathcal{I}$ with |A| < |B|. Since $|A| < |B| \le k$, there exists at least one element $b \in B \setminus A$. Then

$$|A \cup \{b\}| = |A| + 1 \le k,$$

so $A \cup \{b\} \in \mathcal{I}$. This verifies the augmentation property.

1.2 Partition Matroids

Let E be a ground set and let E_1, E_2, \ldots, E_ℓ be a partition of E. For fixed integers k_1, k_2, \ldots, k_ℓ , define

$$\mathcal{I} = \{ I \subseteq E \mid |I \cap E_i| \le k_i \text{ for all } 1 \le i \le \ell \}.$$

Theorem 2. $\mathcal{M} = (E, \mathcal{I})$ is a matroid (called a partition matroid).

Proof. Properties (i) and (ii) clearly hold. We now show the augmentation property (iii). Let $A, B \in \mathcal{I}$ with |A| < |B|. Since

$$\sum_{i=1}^{\ell} |A \cap E_i| < \sum_{i=1}^{\ell} |B \cap E_i|,$$

there exists at least one index j with

$$|A \cap E_i| < |B \cap E_i|$$
.

Choose any $b \in (B \cap E_j) \setminus A$. Then,

$$|(A \cup \{b\}) \cap E_i| = |A \cap E_i| + 1 \le |B \cap E_i| \le k_i$$

and for all $i \neq j$,

$$|(A \cup \{b\}) \cap E_i| = |A \cap E_i| \le k_i.$$

Thus, $A \cup \{b\} \in \mathcal{I}$, proving the augmentation property.

1.3 Linear Matroids

Let F be a field and let $A \in F^{m \times n}$ be a matrix whose columns are indexed by a ground set $E = \{1, \ldots, n\}$. Define

$$\mathcal{I} = \{ I \subseteq E \mid \text{the columns of } A_I \text{ are linearly independent} \},$$

where A_I denotes the submatrix of A consisting of the columns indexed by I.

Theorem 3. $\mathcal{M} = (E, \mathcal{I})$ is a matroid (called a linear matroid).

1.4 Graphic Matroids

Let G = (V, E) be a graph. Define

$$\mathcal{I} = \{ I \subseteq E \mid I \text{ is acyclic} \} .$$

Theorem 4. $\mathcal{M} = (E, \mathcal{I})$ is a matroid (called a graphic matroid).

In particular, this shows that the problem of finding a MST in a graph is a matroid optimization problem.

Proof. Properties (i) and (ii) clearly hold, because removing edges of an acyclic graph cannot create cycles. We now show the augmentation property (iii).

Let $A, B \in \mathcal{I}$ with |A| < |B|. Both A and B are forests in G = (V, E). Let k(F) denote the number of connected components of a forest F on the vertex set V. The number of edges in such a forest is |V| - k(F). Thus, |A| = |V| - k(A) and |B| = |V| - k(B). Since |A| < |B|, it follows that |V| - k(A) < |V| - k(B), which implies k(A) > k(B). Now, assume for contradiction that for every edge $e \in B \setminus A$, the set $A \cup \{e\}$ is cyclic. This means that the endpoints of e are already connected in the forest (V, A). If this holds for all $e \in B \setminus A$, then every edge in B connects vertices that lie within the same connected component of (V, A). Consequently, each connected component of (V, B) must be a subgraph of some connected component of (V, A). This implies that $k(B) \geq k(A)$, a contradiction to k(A) > k(B). Therefore, there must exist an

edge $b \in B \setminus A$ such that its endpoints lie in different connected components of (V, A). Adding such an edge b to A results in $A \cup \{b\}$ being acyclic. Thus, $A \cup \{b\} \in \mathcal{I}$, which proves the augmentation property.

1.5 Matching Matroids

Let G = (V, E) be a graph. Define

 $\mathcal{I} = \{ I \subseteq V \mid \text{there exists a matching in } G \text{ that covers } I \}.$

Theorem 5. $\mathcal{M} = (V, \mathcal{I})$ is a matroid (called a matching matroid).

Proof. Properties (i) and (ii) clearly hold, because any subset of a matching is also a matching. We now show the augmentation property (iii).

Let $A, B \in \mathcal{I}$ with |A| < |B|, and let M_A , M_B be matchings covering A and B respectively. If there is a $b \in B \setminus A$ that is covered by M_A , then $A \cup \{b\} \in \mathcal{I}$ and we are done. Otherwise, the symmetric difference $M_A \triangle M_B$ contains alternating paths between edges of M_A and M_B that start in $b \in B \setminus A$. Since $|B \setminus A| > |A \setminus B|$, there must exists an augmenting path P that ends in $B \setminus A$. Thus, $A \cup \{b\}$ is covered by $M_A \triangle P$, proving the augmentation property. \square

As mentioned above, the independence system (E, \mathcal{I}) where G = (V, E) where each $I \in \mathcal{I}$ is a matching in G is **not** a matroid. (Proof as an exercise.)

2 The Rank of a Matroid

We first show that the size of every base of a matroid is the same.

Lemma 1. Every base of a matroid has the same size.

Proof. Let B_1 and B_2 be two bases of the matroid, and suppose for contradiction that $|B_1| < |B_2|$. By the augmentation property, there is some element $b \in B_2 \setminus B_1$ such that $B_1 \cup \{b\} \in \mathcal{I}$. But this contradicts the maximality of B_1 . Hence $|B_1| = |B_2|$.

The size of a base of a matroid is thus also called the rank of the matroid.

Definition 3. Let $\mathcal{M} = (E, \mathcal{I})$ be a matroid. The rank function $r: 2^E \to \mathbb{N}_{\geq 0}$ associated to \mathcal{M} is defined as

$$r(S) := \max_{I \subseteq Ss.t.I \in \mathcal{I}} |I|$$

for each $S \subseteq E$. We call r(E) the rank of \mathcal{M} .

Informally, the rank of a set $S \subseteq E$ is the size of the largest independent subset of S.