Kurs Datenbankgrundlagen und Modellierung

Sebastian Maneth, Universität Bremen

maneth@uni-bremen.de

SoSe 2023

31.05.2023

Tutorial 4: Last Queries and First FDs

Tutor: Marcel Westenberg

Last queries:

- how many actor names belong to more than one actor?
- how many actors have the name of another actor?

how many actor names belong to more than one actor?

 select count(*) from (select name, count(distinct personid) cnt from persons natural join actors2movies group by name having cnt > 1);
 15401

how many actors have the name of another actor?

 select sum(cnt) from (select name, count(distinct personid) cnt from persons natural join actors2movies group by name having cnt > 1);
 37159

Any ideas?

Functional Dependencies

- Consider a table T with three columns:
- sch(T) = (A,B,C)

• How many different functional dependencies exist for such a table T?

• a.) 8

b.) 27

c.) 49

d.) 64

• $(2^3-1)*(2^3-1)=7*7=49$

b c ab ac bc abc

a

7 nonempty subset of { a, b, c}

country	continent	$\operatorname{\mathbf{calling_code}}$
Swaziland	Africa	+268
Switzerland	Europe	+41
Malta	Europe	+356
Papua New Guinea	Oceania	+675

List **all** completely non-trivial FDs.

```
country --> calling_code
country, continent --> calling_code
calling_code --> country
calling_code, continent --> country
```

what are the candidate keys?
{ country, continent }
{ calling_code, continent }

Consider the following relation

Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

a.) Find all completetly non-trivial FDs for this table.

Consider the following relation

Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

- a.) Find all completetly non-trivial FDs for this table.
- you must use common sense to figure out what is meant by this relation!
- you may need to make some assumptions!

Consider the following relation

Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

- a.) Find all completely non-trivial FDs for this table.
- you must use common sense to figure out what is meant by this relation!
- you may need to make some assumptions!

E.g. let us assume that *ShipNames* are unique. Then, what FD do we obtain from this?

ShipName —> ShipType
TripID —> ShipName, Cargo

Consider the following relation

Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

- a.) Find all completely non-trivial FDs for this table.
- you must use common sense to figure out what is meant by this relation!
- you may need to make some assumptions!

E.g. let us assume that *ShipNames* are unique. Then, what FD do we obtain from this?

ShipName —> Shiptype

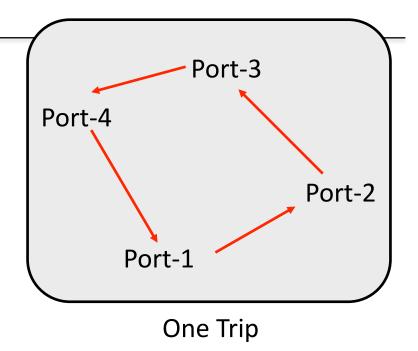
Consider the following relation

Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

- a.) Find all completetly non-trivial FDs for this table.
- you must use common sense to figure out what is meant by this relation!
- you may need to make some assumptions!

E.g. let us assume that *ShipNames* are unique.

TripId —> ???

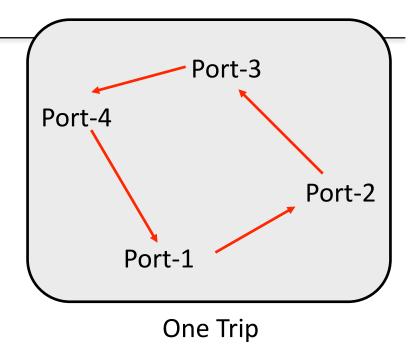

Consider the following relation

Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

- a.) Find all completely non-trivial FDs for this table.
- you must use common sense to figure out what is meant by this relation!
- you may need to make some assumptions!

E.g. let us assume that *ShipNames* are unique. Assume that *Cargo* does **not** change during one trip.

TripId —> ???

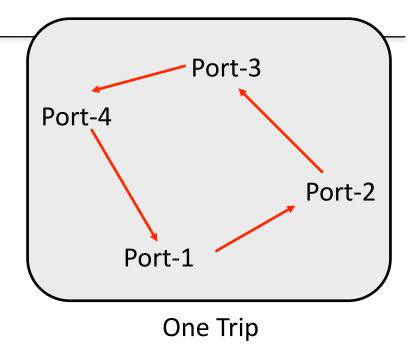

Consider the following relation

Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

- a.) Find all completely non-trivial FDs for this table.
- you must use common sense to figure out what is meant by this relation!
- you may need to make some assumptions!

E.g. let us assume that *ShipNames* are unique. Assume that *Cargo* does **not** change during one trip.

TripId —> ???

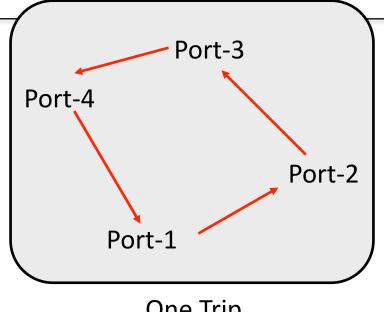

Consider the following relation

Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

- a.) Find all completely non-trivial FDs for this table.
- you must use common sense to figure out what is meant by this relation!
- you may need to make some assumptions!

E.g. let us assume that *ShipNames* are unique. Assume that *Cargo* does **not** change during one trip.

ShipName, Date -> ???


Consider the following relation

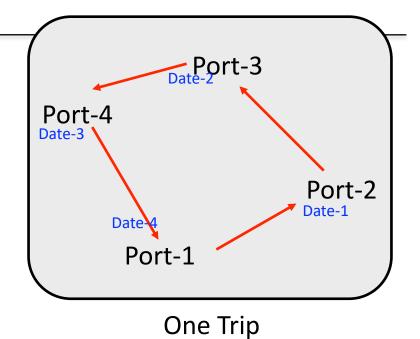
Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

- a.) Find all completely non-trivial FDs for this table.
- you must use **common sense** to figure out what is meant by this relation!
- you may need to make some assumptions!

E.g. let us assume that ShipNames are unique. Assume that Cargo does **not** change during one trip.

Assume this is a DateTime (i.e., includes hour/minutes/seconds)

One Trip


Consider the following relation

Shipping(ShipName, ShipType, TripId, Cargo, Port, Date)

- a.) Find all completely non-trivial FDs for this table.
- you must use common sense to figure out what is meant by this relation!
- you may need to make some assumptions!

E.g. let us assume that *ShipNames* are unique. Assume that *Cargo* does **not** change during one trip.

E.g. this *Datetime* is the arrival time at a given *Port*.

Attribute Closure

$$(1.) A \rightarrow B$$

$$(2.) B \to C$$

$$(3.) C \to D$$

- i. What is the closure of $\{A\}$? A ==> AB ==> ABC ==> ABCD (3.)
- ii. What is the closure of $\{B\}$?

 B ==> BC ==> BCD
 (2.)
 (3.)
- iii. What is the closure of $\{D\}$?

Attribute Closure

$$(1.) A \to B$$

$$(2.) C \to D$$

(3.)
$$E \rightarrow D$$

$$(4.) \quad F \to A, E$$

- i. What is the closure of $\{A\}$?
- ii. What is the closure of $\{A, B\}$?
- iii. What is the closure of $\{A, C\}$?
- iv. What is the closure of $\{F, D\}$? {A, B, D, E, F}
- v. What are the candidate keys? FC ==> ABCEF ==> ABCDEF(4.) (1.) (2.) oder
 (3.)

Attribute Closure

$$A \rightarrow B, C$$

$$B \rightarrow D, E$$

$$C \rightarrow F, G$$

$$D, G \rightarrow H$$

$$E, F \rightarrow I$$

$$H, I \rightarrow A$$

- i. What is the closure of $\{B\}$?
- ii. What is the closure of $\{B,G\}$? BG ==> BDEG ==> BDEGH
- iii. What is the closure of $\{C, D, E\}$? CDE ==> CDEFG ==> CDEFGH ==> CDEFGHI ==> ACDEFGHI ==> ABCDEFGHI
- {C, D, E} {A} iv. What are the candidate keys? {H, I} {B, C} {E, F, H} {B, G, F} {D, G, I}

General Form of an SQL Query:

```
FROM list of tables
WHERE condition over attributes
GROUP BY list of attributes
HAVING condition over aggregates
ORDER BY list of attributes
LIMIT number
```

aggregate functions:

```
COUNT VARIANCE
SUM STDDEV
AVG BIT_OR
MAX BIT_AND
MIN
```