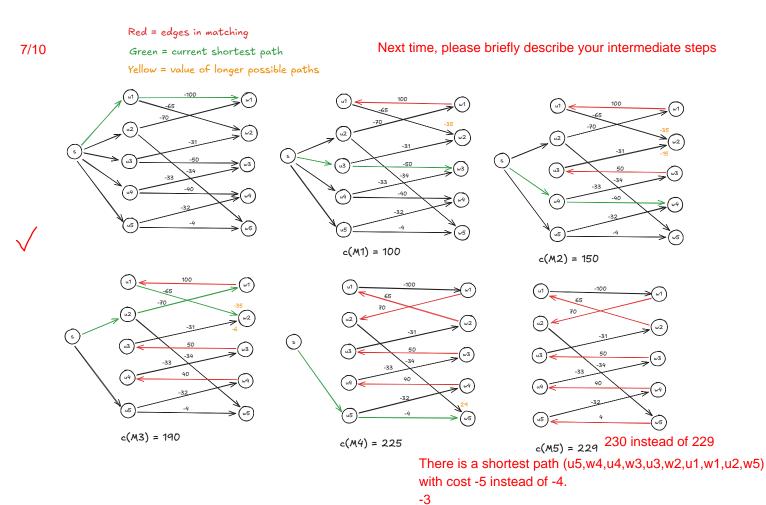
## **Advanced Algorithms UE 1**

by Maarten Behn Group 5

# Exercise 1.1 (Algorithm for maximum weight bipartite matching)

For the weighted bipartite graph given below and for each  $k \in \{1,2,3,4,5\}$ , compute a maximum weight matching  $M_k$  of cardinality k.



Exercise 1.2 (Improved running time for maximum weight bipartite matching)

Prove the following theorem from the lecture:

We can compute a maximum-weight matching in a bipartite graph

in time  $O(n' \cdot (|E| + |V|log(|V|)))$ , where n' is the minimum size of a maximum-weight matching.

#### Given

- bipartite graph G = (V, E, c)
- directed Graph  $D_M$
- set of exposed vertecies  $R_M \subseteq \mathbb{R}$
- the maximum weight matching M with no  $s-R_M$  path in  $D_M$  with negative length

#### **Task**

Let k:=|M| be the cardinality of M Let  $M_n$  be a maximum matching in G of cardinality  $n\in k$ .  $\lfloor \frac{V}{2} \rfloor$  Wrong notation

proof that  $c(M_n) \leq c(M)$ 

## Proof by induction over n

Start n = k

$$M=M_n$$
 ->  $c(M)=c(M_n)$   
( $M$  and  $M_k$  are equal so this is obviously true)

Step 
$$n' = n + 1$$

Let P be a  $s-R_{M_n}$  path in  $D_{M_n}$ Let P' be the shortest  $s-R_{M_n}$  path in  $D_{M_n}$ Let  $c(P):=\sum_{e\in P}c(e)$  (The sum of all weights of a path also refered to as the length.)  $c(M_{n'})=c(M_n)-c(P')$  (The weight of the matching always increases by the negative weight of the shortest path. I have not proofen this further futher as it seems obvious. I hope this is fine. I did not really know how formal the proof should be.) Yes, be a bit more detailed next time. -1

$$c(M_{n'}) \leq c(M_n)$$
 because  $c(P) \geq 0$ 

How do you now get the desired runtime? -1

## **Exercise 1.3 (Algorithm for the assignment problem)**

Prove the following theorem from the lecture:

We can compute a minimum-weight perfect matching in a bipartite graph in time  $O(|V| \cdot (|E| + |V|log(|V|)))$ .

#### Given

• bipartite graph G = (V, E, c)

#### Task

- 1. Show how to perform the minimum-weight perfect matching in a bipartite graph
- 2. Proof that it has a runtime of  $O(|V| \cdot (|E| + |V|log(|V|)))$

## 1. Show by reduction to maximum weight matching

Let 
$$C := max(c(e)) \ \forall e \in E$$

Let 
$$c'(e) := C - c(e)$$

Let 
$$G' := (V, E, c')$$

Perform the first and second step of maximum weight matching on G'.

Let  ${\cal S}$  be the set of computed matchings from the second step.

Let 
$$k:=rac{|V|}{2}$$

Let M be the matching in S with cardinality k.

 ${\it M}$  is the minimum-weight perfect matching in  ${\it G}$ .

4/4

A maximum weight matching of G could be of cardinality k therefore the S must contain M.

Proof: *M* is a perfekt matching

M is of cardinality k.

Proof: M is a minimum-weight matching

Observation

$$\sum_{e \in M} c'(e) = C \cdot |M| - \sum_{e \in M} c(e)$$

 $\sum_{e \in M} c(e)$  is the maximum weigth of all perfect matchings.

If the maximum value is subtracted from a constant value the resulting value is the minimum. Because both sums are over the same matching,

 $\sum_{e \in M} c'(e)$  is the minimum weight of all perfect matchings.

-> M is a minimum-weight matching

# **2. Proof that its runtime is** $O(|V| \cdot (|E| + |V|log(|V|)))$



| Steps                                 | Runtime                                 |
|---------------------------------------|-----------------------------------------|
| Let $C := max(c(e)) \ orall e \in E$ | O(E)                                    |
| Perform maximum weight matching       | $O(\ V\ \cdot (\ E\ +\ V\ log(\ V\ )))$ |

All other steps have a runtime of O(1).

$$\begin{split} O(|V| \cdot (|E| + |V|log(|V|)) + E) \\ &\Rightarrow O((|V| + 1) \cdot (|E| + |V|log(|V|)) \\ &\Rightarrow O((|V|) \cdot (|E| + |V|log(|V|)) \end{split}$$

# Sources

The idea for C I got from here:

https://www.cse.iitd.ac.in/~naveen/courses/CSL851/lec4.pdf (10.4.25, 22:09)