

Prof. Dr. Nicole Megow

Summer 2025

Dr. Felix Hommelsheim Dr. Alexander Lindermayr

Bart Zondervan

Advanced Algorithms

Exercise Sheet 4

Submission: Monday, May 12, 2025, at 11:59 am. This exercise will be discussed on Wednesday, May 14, 2025.

Exercise 4.1 (Exponential running time of Ford-Fulkerson)

(6 Points)

- a) Give an example of a network \mathcal{N} in which $|V| \leq 4$ and the number of iterations of the Ford-Fulkerson Algorithm is c_{\max} , where c_{\max} is the largest capacity of any arc.
- b) What is the size of the input for this example?
- c) Prove that this leads to an exponential running time (w.r.t. the size of the input).

Exercise 4.2 (Adding flows)

(8 Points)

Let f be a flow in a network $\mathcal{N} = (V, E, c, s, t)$, and let g be a flow in the residual network \mathcal{N}_f of \mathcal{N} w.r.t. f. Prove the following statements:

- a) f + q is a flow in \mathcal{N} .
- b) If g is a maximum flow in \mathcal{N}_f , then f+g is a maximum flow in \mathcal{N} .

Exercise 4.3 (Decomposition of flows)

(6 Points)

Let $\mathcal{N} = (V, E, c, s, t)$ be an s-t-network with m edges. Prove that there exists a maximum flow in \mathcal{N} that is the sum of at most m flows f_1, \ldots, f_k , each of which takes positive values only on a single s-t-path in \mathcal{N} . Moreover, prove that if all capacities in \mathcal{N} are integers, then f_1, \ldots, f_k can be chosen as integral flows.

The following exercises are no homework and shall be discussed in presence.

Exercise 4.4 (Multiple sources and sinks)

Let G = (V, A) be a digraph with capacities $c: A \to \mathbb{N}$. Consider two disjoint sets S and T of vertices in G. An (S, T)-flow in (G, c) is a function $f: A \to \mathbb{N}$ such that

- 1. $0 \le f(e) \le c(e)$ for all $e \in A$, and
- 2. $\sum_{e \in \delta^+(v)} f(e) = \sum_{e \in \delta^-(v)} f(e)$ for all $v \in V \setminus (S \cup T)$.

The value of the (S,T)-flow f equals $\sum_{t\in T} \left(\sum_{e\in\delta^-(t)} f(e) - \sum_{e\in\delta^+(t)} f(e)\right)$. Prove that an (S,T)-flow in (G,c) of maximum value can be computed in $O(m^2\cdot n)$, where m=|E| and n=|V|.

Exercise 4.5 (Intersection/union of minimum cuts)

Let $\mathcal{N} = (V, A, c, s, t)$ be a network, and let $\delta^+(X)$ and $\delta^+(Y)$ be minimum s-t-cuts in (G, c). Show that $\delta^+(X \cap Y)$ and $\delta^+(X \cup Y)$ are also minimum s-t-cuts in (G, c).

Exercise 4.6 (Minimum edge cover formula)

Let G = (V, E) be a graph. An edge cover of G is a set of edges $F \subseteq E$ such that for every vertex $v \in V$ there exists an edge in F incident to v. Denote by $\rho(G)$ the size of a smallest edge cover in G, and by $\nu(G)$ the size of a maximum matching in G.

Prove that for any graph G without isolated vertices that $|V| = \nu(G) + \rho(G)$.