Advanced Algorithms UE 7

by Maarten Behn Group 5

Exercise 7.1 (Modeling as Min-Cost Flow) (10 Points)

Consider the following problem.

A car manufacturer has r factories F_1, \ldots, F_r to produce s different car models M_1, \ldots, M_s .

For $i \in [r]$ and $j \in [s]$, it is known whether factory F_i can produce model Mj and, if so, at what unit cost $\alpha_{i,j}$.

Furthermore, factory F_i for $i \in [r]$ can produce at most β_i cars per month, of which at most $\gamma_{i,j}$ can be of model M_j , $j \in [s]$.

The cars are sold by t car dealers H_1, \ldots, H_t .

For $i \in [r]$ and $k \in [t]$, it costs $\delta_{i,k}$ to transport a vehicle from F_i to H_k

Additionally, dealer H_k , for $k \in [t]$, sells $\theta_{j,k}$ cars of model $M_j \in [s]$ per month.

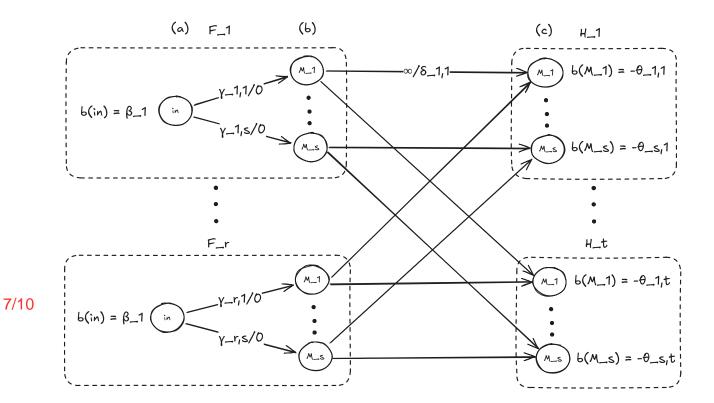
The goal is to plan the production and transportation of cars such that the total cost is minimized.

Model the above optimization problem as a minimum-cost flow problem.

Specify the set of nodes and edges, as well as the edge capacities, costs, and balances.

Argue why your modeling solves the given production problem.

Idea



Formal definition

$$\mathcal{N} = (V, E, c, b, p)$$

$$egin{aligned} V &= \{a_i | i \in [r]\} \ &\cup \{b_{i,j} | i \in [r] j \in [s]\} \ &\cup \{c_{j,k} | j \in [s] k \in [t]\} \end{aligned}$$

only add the edge if factory i can produce

$$E = \{(a_i,b_{i,j})|i\in[r]j\in[s]\}$$
 \leftarrow \cup $\{(b_{i,j},c_{j,k})|i\in[r]j\in[s]k\in[t]\}$

$$b(a_i)=eta_i$$
 $b(b_{i,j})=0$ The sum of all the b-values should equal 0, which is not the case for your b-function. -2 $b(c_{j,k})=- heta_{j,k}$

$$egin{aligned} c((a_i,b_{i,j})) &= \gamma_{i,j} \ c(b_{i,j},c_{j,k})) &= \infty \end{aligned}$$

$$p((a_i,b_{i,j})) = 0 \quad ext{alpha_{ij}} \quad ext{-1} \ p(b_{i,j},c_{j,k})) = \delta_{i,k}$$

Argument why a min const flow problem on $\ensuremath{\mathcal{N}}$ models the optimization problem

Each Factory has in a_i an input flow corresponding to β_i . This models the amount of cars each factory can produce.

This flow gets split up into $b_{i,1} \dots b_{i,s}$.

The edges have a max capacity of $\gamma_{i,j}$

If the factory does not produce the model the capacity would be $0.\sqrt{\mathcal{L}}$. Therefore incoming flow into $b_{i,j}$ represents how many cars of model j factory i can produce.

The flow from $b_{i,j}$ gets split up into $c_{j,1} \dots c_{j,t}$

The incoming flow into $c_{j,k}$ represents how many cars of model j dealer k sells.

Therefore the $b(c_{j,k})$ is $-\theta_{j,k}$

The edges $p((b_{i,j}, c_{j,k}))$ have a cost of $\delta_{i,k}$ to represent the cost of transporting a car of model j from factory i to dealer k.

Therefore the edges $(b_{i,j},c_{j,k})$ represent the distribution problem of cars to dealers.

Exercise 7.2 (Decomposition into Cycles) (10 Points)

Prove the following lemma from the lecture:

Let f be a circulation in a network N=(V,E,c,b,p). Then, there exist flows f_1,\ldots,f_k with $k\leq m$ such that

- (i) $f = f_1 + \ldots + f_k$,
- (ii) f_i is a feasible circulation in $\mathcal N$ for all $i \in [k]$, and
- (iii) f_i takes positive values only on edges of a cycle C_i in N for all $i \in [k]$.

Idea

4/10

repeatedly finding a cycle in f and extracting flow along these cycle until the f is empty.

Helper definition

$$E_f := \{e \in E \mid f(e) > 0\}$$
 $G_f := (V, E_f)$

Observation

When f is a non empty circulation there must be at least one cycle in G_f .

Proof

Start at
$$(u,v_1)\in E_f$$
 since $\sum\limits_{e\in\delta^-(v_1)}=\sum\limits_{e\in\delta^+(v_1)}\exists (v_1,v_2)\in E_f$ what is this?

following all possible edges recursively must lead back to v_1 this proof is circular -2 forming a cycle

because G_f is finite and all flow in a circulation is conserved.

Algorithm

While *f* is not empty

Create G_f for f

Let C be a cycle found in G_f

 $orall e \in C$ $f_i(e):=\underline{min}(f(e))$ where are you taking the minimum over? this notation is insufficient -1 orall e
otin C $f_i(e):=0$

 $f \leftarrow f - f_i$ You should also mention that f-f_i is still a circulation, hence you can iteratively find cycles, not just in the first iteration. -1

Proof f_i is a feasible circulation

- satisfies conserves flow -> same amount goes in a circle.
- satisfies capacity constraints -> all flow is positive and less or equal to the original f

Proof $k \leq m$

Each iteration removes at least one edge form E_f (the one with the minimum flow on the cycle)

so
$$k \leq |E| = m$$

You should learn to write complete sentences, starting on a line, and ending with a point. Having a lot of line breaks and incomplete sentences makes it hard to understand. You are loosing points in the formulation, while I think you understand it very well.