Exercise 9.1 (MST Modeling and Separation) (8 Points)

Consider the Minimum Spanning Tree (MST) problem over a graph G=(V,E) with edge costs c_e and variables $x_e \in \{0,1\}$ indicating whether edge e is in the solution.

Use the so-called subtour elimination constraint

$$\sum_{e \in E(S)} x_e \leq |S| - 1 \ \, \forall S \subset V, 2 \leq |S| \leq |V| - 1$$

and one global constraint:

$$\sum_{e \in E} x_e = |V| - 1$$

(a) Give an ILP formulation for the MST problem and argue why it is correct.

Variables:

$$x_e \in \{0,1\} \ \ orall e \in E$$

Optimization function

$$min\sum_{e\in E}c_ex_e$$

Constraints

8/8

$$egin{aligned} \sum_{e \in E(S)} x_e & \leq |S| - 1 \ \ orall S \subset V, 2 \leq |S| \leq |V| - 1 \ \ & \sum_{e \in E} x_e = |V| - 1 \ \ & x_e \in \{0,1\} \ \ orall e \in E \end{aligned}$$

Argument why the IPL correct is

Feasibility enforces spanning trees:

- The cardinality constraint guarantees that the selected edges form a subgraph with exactly |V|-1 edges. \checkmark
- The subtour elimination constraints prevent any cycle from forming in any subset S of vertices. Since any cycle would violate the inequality

$$\sum_{e \in E(S)} x_e \leq |S| - 1,$$

no cycles can exist in the chosen edge set. \checkmark

Connectivity is ensured implicitly:

- Given that the graph has |V| vertices and |V|-1 edges, and no cycles are allowed (due to subtour constraints), the selected edges form a forest.
- Since the cardinality is exactly |V|-1 edges, the forest cannot be disconnected (a disconnected forest would have fewer than |V|-1 edges).
- Therefore, the selected edges form a connected acyclic subgraph
 i.e., a spanning tree.
- 3. Optimality of the solution:

By minimizing the sum of costs

$$\sum_{e\in E} c_e x_e,$$

the ILP finds the spanning tree with minimum total edge cost.

(b) Give a polynomial-time separation algorithm for the LP-relaxation of your ILP.

Hint: Use your knowledge about flow or cut problems.

We want to separate the subtour elimination constraints from a given fractional solution $\mathbf{x}=(x_e)_{e\in E}$ of the LP-relaxation, where $x_e\in[0,1].$ That is, we want to check if there exists any subset $S\subset V$ with $2\leq |S|\leq |V|-1$ such that

$$\sum_{e \in E(S)} x_e > |S|-1,$$

which would violate the subtour elimination constraint.

Note that

$$\sum_{e \in E(S)} x_e \leq |S| - 1$$

is equivalent to

$$\sum_{e \in \delta(S)} x_e \geq 1,$$

where $\delta(S)$ are the cut edges of S.

The total number of edges inside S plus the edges crossing the cut $\delta(S)$ relate to the degrees and connectivity. Since $\sum_{e\in E} x_e = |V|-1$,

the subtour elimination can equivalently be detected by cuts of low x_e -weight.

Therefore the subtour elimination constraints can be replaced by cut constraints:

$$\sum_{e \in \delta(S)} x_e \geq 1, \quad orall S \subset V, S
eq \emptyset, V.$$

Goal of the Algorithm

Given fractional values x_e , find a subset S such that

$$\sum_{e \in \delta(S)} x_e < 1.$$

If such a set S exists, then the constraint corresponding to S is violated.

Algorithm

Input: fractional solution $x_e \in [0,1]$.

- For each vertex $v \in V$:
 - Construct graph with edge capacities $c_e = x_e$.
 - For each other vertex $w \neq v$, compute the minimum v-w cut.
 - If min cut value < 1, output the cut S inducing the violation.
- If no cut with capacity < 1 found, no subtour elimination constraint is violated.

Proof

- Since the number of vertices is |V|, and for each v we consider cuts to all other vertices, the total number of max-flow computations is polynomial (at most $|V| \times (|V| 1)$).
- $\sqrt{}$
- Each violated subtour elimination corresponds to a cut with capacity less than 1.
- This separation algorithm finds such cuts efficiently or confirms no violations exist.

Source of the Idea

https://theory.epfl.ch/osven/courses/Approx13/Notes/lecture9and10.pd f (22.06.2025, 21:37)

Exercise 9.2 (Total Unimodularity) (4 Points)

Let G = (V, E) be a bipartite graph.

Prove that the node-edge incidence matrix of ${\it G}$ is totally unimodular.

Hint: Use one of the properties stated in class.

Setup

Let $M \in \{0,1\}^{|V| \times |E|}$ node-edge incidence matrix of G. $m_{v,e} = 1$ e is indecent to v and 0 is it is not. M is in row (the vertices), column (the edges) order.

Let $V_1, V_2 \subseteq V$ be the two sides of the bipartite Graph. (all edges have one vertex in V_1 and one in V_2)

Observation

4/4

An edge is always connected to two vertices.

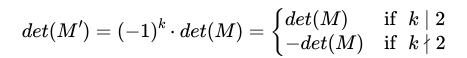
$$\Rightarrow orall e \in E \ \sum_{v \in V} m_{v,e} = 2$$

 \Rightarrow Every column in M contains two ones.

Characteristics of determiant

from Mathe 1 Course

Given a quadratic Matrix M construct M' from M by multiplying k rows by -1 then:



Proof:

https://proofwiki.org/wiki/Determinant_with_Row_Multiplied_by_Const ant?utm_source=chatgpt.com

Proof

Let A be quadratic sub matrix of M.

Construct A' from A by multiplying all rows belonging to vertices from S_2 by -1.

Now every column in A' contains at most one +1 and one -1.

The Lemma by Poincar´e states that A' is unimodular.

Then A is also unimodular because multiplying rows -1 does not change the fact that the $det(A) \in \{-1,0,1\}$.

Exercise 9.3 (Complementary Slackness) (8 Points)

Dualize the following LPs and test with complementary slackness whether the given solutions are optimal.

Primal LP (P):

$$egin{aligned} \max x_1 + 3x_2 + x_3 \ ext{s.t.} \ x_1 + 2x_2 + 7x_3 & \leq -3 \ x_2 - x_3 & = 9 \ 9x_1 & \leq 5 \ x_1 & \geq 0 \ x_2 & < 0 \end{aligned}$$

1. Constraint

2. Constraint

3. Constraint

4. Constraint

5. Constraint

Dual variables:

• y_1 for constraint 1 (\leq): $y_1 \geq 0$

• y_2 for constraint 2 (=): unrestricted

• y_3 for constraint 3 (\leq): $y_3 \geq 0$

Dual LP (D):

$$egin{array}{ll} \min & -3y_1+9y_2+5y_3 \ \mathrm{s.t.} \ y_1+9y_3 \geq 1 \ & 2y_1+y_2 \geq 3 \ & -1 \ & 7y_1-y_2 \geq 1 \ & = \ & y_1 \geq 0, y_3 \geq 0, \ y_2 \in \mathbb{R} \end{array}$$

Given Primal Solution:

$$x = \left(0, 0, -9\right)^T$$

1.
$$x_1 + 2x_2 + 7x_3 = 0 + 0 + 7(-9) = -63 \le -3$$

2.
$$x_2 - x_3 = 0 - (-9) = 9$$

3.
$$9x_1 = 0 \le 5$$

4.
$$x_1 = 0 \ge 0$$

5.
$$x_2 = 0 \le 0$$

All constraints are satisfied

Given Dual Solution:

$$y=\left(rac{4}{9},rac{19}{9},rac{1}{9}
ight)^T$$

1.
$$y_1 + 9y_3 = \frac{4}{9} + 9 \cdot \frac{1}{9} = \frac{13}{9} > 1$$

2.
$$2y_1 + y_2 = 2 \cdot \frac{4}{9} + \frac{19}{9} = \frac{27}{9} = 3$$

3.
$$7y_1 - y_2 = 7 \cdot \frac{4}{9} - \frac{19}{9} = \frac{28 - 19}{9} = 1$$

4.
$$y_1 = \frac{4}{9} \ge 0$$

5.
$$y_3 = \frac{1}{9} \ge 0$$

All constraints are satisfied

Complementary Slackness Fails:

- Constraint 1 is slack (-63 < -3) $\rightarrow y_1 = 0 \rightarrow \text{No}$
- Constraint 3 is slack (9 $x_1=0<5$) $ightarrow y_3=0
 ightarrow \mathsf{No}$

Primal and dual feasible, but complementary slackness fails, so the solutions are not optimal.

b)

Primal LP (P):

$$\min 5x_1 + 6x_2$$

s.t.
$$3x_1 - x_2 \ge 8$$

$$2x_1 + 4x_2 = -2$$

$$3x_1+2x_2\leq 4$$

$$x_{1\geq 0}$$

- 1. Constraint
 - 2. Constraint
 - 3. Constraint
 - 4. Constraint

Dual variables:

- y_1 for constraint 1 (>): $y_1 > 0$
- y_2 for constraint 2 (=): unrestricted
- y_3 for constraint 3 (\leq): $y_3 \leq 0$

Dual LP:

$$egin{array}{l} \max 8y_1 - 2y_2 + 4y_3 \ ext{s.t.} \ 3y_1 + 2y_2 + 3y_3 \leq 5 \ -y_1 + 4y_2 + 2y_3 \leq 6 = \ y_1 \geq 0, \ y_3 \leq 0, \ y_2 \in \mathbb{R} \end{array}$$

Given Primal Solution:

$$x=\left(rac{15}{7},-rac{11}{7}
ight)^T$$

1.
$$3x_1 - x_2 = 3 \cdot \frac{15}{7} - (-\frac{11}{7}) = \frac{45+11}{7} = \frac{56}{7} = 8$$
2. $2x_1 + 4x_2 = 2 \cdot \frac{15}{7} + 4 \cdot (-\frac{11}{7}) = \frac{30-44}{7} = -2$
3. $3x_1 + 2x_2 = 3 \cdot \frac{15}{7} + 2 \cdot (-\frac{11}{7}) = \frac{45-22}{7} = \frac{23}{7} \approx 3.29 \le 4$
4. $x_1 = \frac{15}{7} \ge 0$

All constraints are satisfied

Given Dual Solution:

$$y=\left(rac{4}{7},rac{23}{14},0
ight)^T$$

1.
$$3y_1 + 2y_2 + 3y_3 = 3 \cdot \frac{4}{7} + 2 \cdot \frac{23}{14} = \frac{12}{7} + \frac{46}{14} = \frac{12+23}{7} = \frac{35}{7} = 5$$
2. $-y_1 + 4y_2 + 2y_3 = -\frac{4}{7} + 4 \cdot \frac{23}{14} = -\frac{4}{7} + \frac{92}{14} = -\frac{4}{7} + \frac{46}{7} = \frac{42}{7} = 6$
3. $y_1 = \frac{4}{7} \ge 0$
4. $y_3 = 0 \le 0$

All constraints are satisfied

Complementary Slackness passes:

• Constraint 1 is tight $\rightarrow y_1$ can be eq 0

- Constraint 2 is tight $\rightarrow y_2$ unrestricted
- Constraint 3 is slack $\rightarrow y_3 = 0$
- Variable $x_1=\frac{15}{7} \neq 0$, so dual constraint 1 must be tight
- Variable $x_2=-rac{11}{7}
 eq 0$, so dual constraint 2 must be tight

Primal and dual feasible, complementary slackness holds, so the solutions are optimal.