Robot Design Lab

COURSE OVERVIEW

Dr. Teena Hassan M.Sc. Mihaela Popescu Robotics Innovation Center DFKI Bremen

Prof. Dr. Dr. h.c. Frank Kirchner Arbeitsgruppe Robotik, Universität Bremen https://robotik.dfki-bremen.de/ robotics@dfki.de 18th October, 2022 - Bremen, Deutschland

Contents

- 1 Introduction
- 2 Topics
- 3 Schedule
- 4 Grading
- 5 Study Tips
- **6** Outlook

Introduction

Robot Design Lab

Who is it for? What is it about?

- Course for Bachelor Informatik Vollfach students as part of the "Fachinformatik" module.
- Learn about basic concepts of autonomous mobility.
- Learn about software algorithms and hardware for mobile robots.
- ▶ Hands on programming with TurtleBot 3 robots.
- Gain basic knowledge in using Ubuntu, ROS2 and Python.
- Work in teams and collaborate with other students.

Lecturers and Tutors for Robot Design Lab

The lectures and tutorials will be provided by:

- ▶ Prof. Dr. Dr. h.c. Frank Kirchner (Uni Bremen and DFKI)
- ▶ Dr. rer. nat. Teena Hassan (Uni Bremen, thassan@uni-bremen.de)
- ► Mihaela Popescu, M.Sc. (Uni Bremen, popescu@uni-bremen.de)
- ► A few others for specific sub-topics (Uni Bremen / DFKI)

Topics

Timetable of Lectures and Tutorials

w1	10/18/22 10/20/22	Introduction to Robotics Exercise 1 (Introduction to Robotics)	w9	12/13/22 12/15/22	Robot Perception I Exercise 5 (Robot Perception)
w2	10/25/22 10/27/22	Robot Programming	w9	12/20/22	Robot Perception II
	10/2//22	Working/questions on ex.1		12/22/22	Working/questions on ex. 5
w3	11/01/22	Sensors			Christmas Holidays
	11/03/22	Exercise 2 (Sensors and Odometry)			
			w11	01/10/23	Mechanics
w4	11/08/22	Robot Odometry		01/12/23	Exercise 6 (Mechanics, Actuators and Electronics)
	11/10/22	Working/questions on ex. 2			
			w12	01/17/23	Actuators
w5	11/15/22	Mapping		01/19/23	Working/questions on ex. 6
	11/17/22	Exercise 3 (Localization and Mapping)		01/15/25	Working/questions on ex. o
			w13	01/24/23	Electronics
w6	11/22/22	Localisation		01/26/23	Working/questions on ex. 6
	11/24/22	Working/questions on ex. 3		01/20/23	Working/questions on ex. o
			w14	01/31/23	Robotics and Al
w7	11/29/22	Path Planning		02/02/23	Competition Day
	12/01/22	Exercise 4 (Path and Task Planning)		02/02/20	Sompetition Day
w8	12/06/22	Task and Behaviour Planning			
	12/08/22	Working/questions on ex. 4			

Frequency and Structure

- ▶ Worksheets will be uploaded in Stud.IP every second week of tutorials.
- Worksheets will include theoretical questions and practical tasks.
- ► There will be **12 groups of 3 students each**.
- ► Each group will work with one TurtleBot 3 robot.

Assistance

We will help you with the worksheets during the tutorials.

- ► Tutorial will take place every week on Thursdays onsite (see Schedule).
- We set up a Discord server so that you can interact with other participants and tutors, ask questions or get help.
- ▶ You can also use the Stud.IP forum to ask questions and feedback.
- You can also contact the lecturers and tutors via e-mail.

Software Requirements

In order to work with the TurtleBot 3 robots and solve the worksheets, you will need a laptop with:

- ▶ Ubuntu 22.04. (as standalone or as virtual machine).
- ROS 2 Humble.
- Python 3.

Remark: Please consult the Installation Guide we provided in StudIP.

Competition

- At the end of the semester, you can try out what you learned in a competition.
- Your robot will compete against other teams in a predefined scenario.
- ► More details coming soon!
- For fun, not graded!

Schedule

Schedule of Robot Design Lab

Lectures

- ▶ Video lectures uploaded on Tuesdays before 10:00 in StudIP (Opencast).
- ▶ **Q&A sessions** for lectures on **Wednesdays 10:00 12:00 in presence** in the seminar room B0.10 at DFKI building in Robert-Hooke-Str. 1.
 - ▶ Remark: It might also take place online depending on the pandemic situation.
- Language of instruction: **English** slides and videos.

Schedule of Robot Design Lab

Tutorials

- ► The tutorials will take place on **Thursdays 10:00 12:00** in the seminar room B0.10 at DFKI building in Robert-Hooke-Str. 1.
- ▶ The worksheets will be solved during tutorial sessions with TurtleBot robots.
- ▶ Tutors will be present during these sessions for assistance and guidance.
- Language of instruction: Tutorials and worksheets will be in English, but hand-ins can be provided by students in English or in German.
- ► Remark: Room for tutorials and Q&A sessions might vary during the semester. We will inform you via StudIP.

Schedule of Robot Design Lab

Worksheets

- ▶ All worksheets should be solved in groups. But, every group member is expected to have a basic understanding of how to solve all tasks!
- ▶ Write your answers/solutions in the **provided LaTeX-Template**.
- ▶ Upload your answers as a PDF file, together with any source code files in Stud.IP **until 23:59 of the due date** specified for the exercise sheet.

Grading

Worksheet Requirements

Requirements to pass

There will be **6 worksheets** to be solved (\sim one worksheet every two weeks). In order to pass this course:

- ▶ **All** worksheets must be attempted.
- Score at least 50% on 4 worksheets.
- Score at least 60% over all worksheets.
- ▶ Plagiarism: not acceptable, examination office (Prüfungsamt) will be informed!

Grading of Worksheets

Grade	From %	To %
1.0	97	100
1.3	93	96
1.7	89	92
2.0	85	88
2.3	81	84
2.7	77	80
3.0	73	76
3.3	69	72
3.7	65	68
4.0	60	64

Robot Design Lab Examination

You have two options:

- 1. Solve worksheets and participate in a group interview.
 - Pre-requisite: You should pass the worksheets.
 - You will get a pre-grade from the worksheets.
 - Group interview will help to improve individual grades.
- 2. Listen to video lectures and take an individual oral exam.
 - ▶ You can solve some exercises in simulation, but these will not be graded.
 - ▶ Note: Only Bachelor Informatik Vollfach students can appear for the oral exam.

Study Tips

Learn on your own or build study groups.

- Learn on your own or build study groups.
- ▶ Work as a team, but distribute tasks equally.

- Learn on your own or build study groups.
- Work as a team, but distribute tasks equally.
- ▶ Identify and address problems early.

- Learn on your own or build study groups.
- Work as a team, but distribute tasks equally.
- ▶ Identify and address problems early.
- ▶ Do not hesitate to ask for help from team members or tutors.

- Learn on your own or build study groups.
- Work as a team, but distribute tasks equally.
- Identify and address problems early.
- Do not hesitate to ask for help from team members or tutors.
- ▶ Utilize the rich online resources e.g. online lectures from other universities.

- Learn on your own or build study groups.
- Work as a team, but distribute tasks equally.
- Identify and address problems early.
- Do not hesitate to ask for help from team members or tutors.
- ▶ Utilize the rich online resources e.g. online lectures from other universities.

- Learn on your own or build study groups.
- Work as a team, but distribute tasks equally.
- Identify and address problems early.
- Do not hesitate to ask for help from team members or tutors.
- ▶ Utilize the rich online resources e.g. online lectures from other universities.
- Take notes (on notepad or paper).

- Learn on your own or build study groups.
- ▶ Work as a team, but distribute tasks equally.
- Identify and address problems early.
- Do not hesitate to ask for help from team members or tutors.
- ▶ Utilize the rich online resources e.g. online lectures from other universities.
- Take notes (on notepad or paper).
- ► Start organizing your study materials and notes, for future reference.

Outlook

Further Lectures Offered by AG Robotik

Courses

- ► Robot Design Lab (WiSe) → bachelor
- ► Modern Robot Control Architectures (SoSe) → bachelor/master
- ightharpoonup Machine Learning for Autonomous Robots (WiSe) ightarrow master
- ightharpoonup Reinforcement Learning (SoSe) ightharpoonup master
- ► Human-Centered Interaction in Robotics (SoSe) → master
- ightharpoonup Project on Human-Robot Interaction (WiSe + SoSe) ightarrow bachelor/master

DFKI Robotics Innovation Center

https://www.youtube.com/watch?v=-Ig7FDOMCNk

Next: Introduction to Robotics.