Robot Design Lab

ROBOT OPERATING SYSTEM (ROS)

M. Sc. Mihaela Popescu Dipl.-Inf. Andreas Bresser Robotics Innovation Center DEKI Bremen

Prof. Dr. h.c. Frank Kirchner Arbeitsgruppe Robotik, Universität Bremen https://robotik.dfki-bremen.de/ robotics@dfki.de 26th October 2022 - Bremen Deutschland

Overview ROS in the Robot Design Lab

- 1 ROS Introduction
- 2 ROS Concepts
- 3 ROS 1 and ROS 2
- 4 Conclusions and Further Reading

ROS Introduction

comic by https://phdcomics.com

comic by https://phdcomics.com

comic by https://phdcomics.com

comic by https://phdcomics.com

comic by https://phdcomics.com

comic by https://phdcomics.com

comic by https://phdcomics.com

comic by https://phdcomics.com

comic by https://phdcomics.com

ROS Introduction What's the problem?

Solutions?

⇒ How to break the circle?

comic by https://phdcomics.com

ROS Introduction What's the problem?

Solutions!

- Standardize components (that can be documented),
- build generic tools,
- split the work to multiple people by building a community and
- make the industry part of this community.

comic by https://phdcomics.com

ROS Introduction Standing on the shoulders of giants

Evolution of ROS

- ▶ Willow Garage (2008-2013)
 - Building libraries for the community
- ► OSRF/Open Robotics (2014+)
 - 2000+ packages, worldwide adaption
- ► ROS 2 (since 2016)
 - New middleware with deep changes

PR-1 (top) by Stanford University and PR-2 by Willow Garage, image source: https://robots.ieee.org/robots/pr2/

ROS Introduction What is ROS?

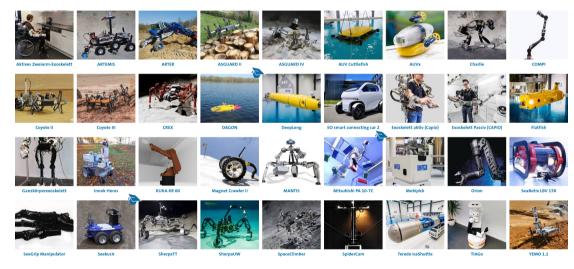
ROS Introduction

Examples for very different systems using ROS

ROS 1 systems at DFKI-RIC

Cuttlefish — AUV with 2 arms

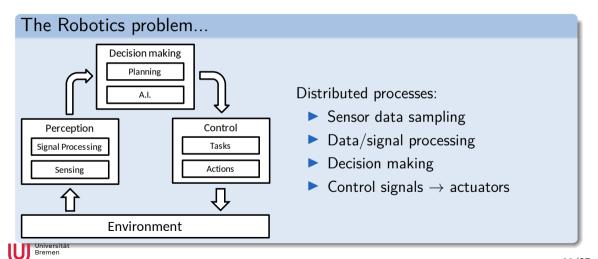
ARTER — Autonomous Rough Terrain Excavator Robot


Mobipick — Mobile Manipulator a MiR 100 base and UR5 arm

Source: https://robotik.dfki-bremen.de/en/research/robot-systems.html

ROS Introduction DFKI RIC Active Systems

Source: https://robotik.dfki-bremen.de/en/research/robot-systems.html


ROS Introduction ROS distributions (End-Of-Life dates in brackets)

Ubuntu	ROS 1 distribution	ROS 2 distribution	Release
22.04 LTS		Humble Hawksbill (05/2027)	2022
20.04 LTS		Galactic Geochelone $(11/2022)$	2021
	Noetic Ninjemys (05/2025)	Foxy Fitzroy (05/2023)	2020
18.04 LTS		Eloquent Elusor	2019
		Dashing Diademata	
	Melodic Morenia (05/2023)	Crystal Clemmys	2018
		Bouncy Bolson	
17.04	Lunar Loggerhead		2017
16.04 LTS	Kinetic Kame	Ardent Apalone	2016
currently supported distributions			

Topology Topology of a Robot

ROS Concepts

Nodes What is a ROS Node?

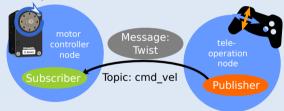
Nodes are processes.

A node is a small Python or C++ program that should be responsible for a single, module purpose. Examples of nodes:

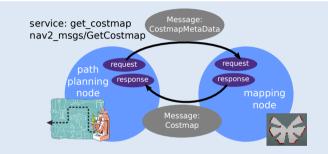
mapping node

Nodes exchange data \rightarrow interprocess communication.

A simple example:

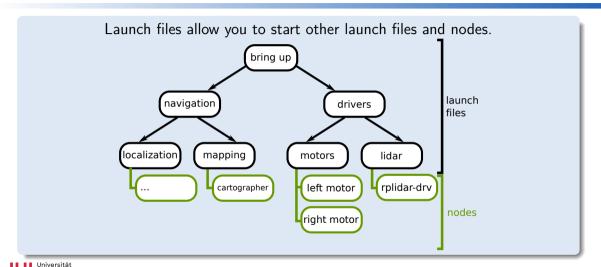


- teleop-node gets data from the joystick, calculates speed for the robot
- teleop-node sends calculated velocity, the motor controller-node receives it
- ▶ motor controller-node calculates how fast the motor has to turn to move the robot and sends the translated speed to the motor.


ROS Topics

Nodes can use topics to communicate. Use topics to send fast and repeating data (for example sensor readings).

- ▶ the teleop-node publishes a Twist message on the cmd vel topic.
- ▶ the motor controller-node subscribes to the cmd vel topic and receives it.
- ▶ other nodes can also talk or listen to cmd vel!



- ► Topic-Problem: You don't know if your message got received.
- ▶ ROS services force you to send feedback with your message!
- ▶ Multiple nodes can call the same service, but only one node can provide one!

Launch Files

Examples of ROS 2 commands that can be executed through the command line interface (CLI):

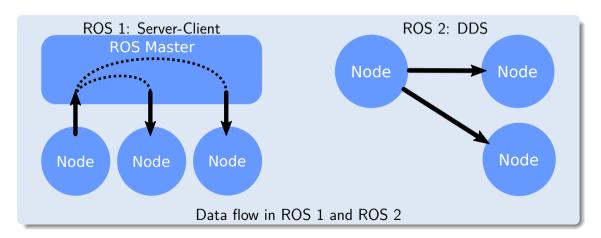
▶ colcon build: Build all packages in the workspace.

- colcon build: Build all packages in the workspace.
- ros2 node list: Outputs a list of available nodes.

- colcon build: Build all packages in the workspace.
- ros2 node list: Outputs a list of available nodes.
- ros2 topic list: Outputs a list of active topics.

- colcon build: Build all packages in the workspace.
- ros2 node list: Outputs a list of available nodes.
- ros2 topic list: Outputs a list of active topics.
- ▶ ros2 interface show <message-type>: Outputs the interface definition.

- colcon build: Build all packages in the workspace.
- ros2 node list: Outputs a list of available nodes.
- ros2 topic list: Outputs a list of active topics.
- ▶ ros2 interface show <message-type>: Outputs the interface definition.
- ros2 run <package> <executable>: Runs an executable (node).


- colcon build: Build all packages in the workspace.
- ros2 node list: Outputs a list of available nodes.
- ros2 topic list: Outputs a list of active topics.
- ▶ ros2 interface show <message-type>: Outputs the interface definition.
- ros2 run <package> <executable>: Runs an executable (node).
- ros2 launch <package> <launch-file>: Runs a launch file.

ROS 1 and ROS 2

ROS 1 and ROS 2
Differences in Communication

ROS 1 and ROS 2 Different tools and commands

Build tools

- ▶ ROS 1 uses catkin_make or catkin build
- ► ROS 2 uses colcon

Command line interfaces (CLI)

- ▶ ROS 1 has separated commands like roslaunch, rostopic, ...
- ► ROS 2 commands are run with ros2 followed by a space, like ros2 launch or ros2 topic.

ROS 1 and ROS 2 Differences in programming

Starting nodes

- ▶ ROS 1 launch files are written in XML.
- ▶ ROS 2 launch files are written in **Python**. (you can still force XML)

Developing nodes

- ► The Python 2 API for ROS 1 is rospy.
- ► The Python **3** API for ROS 2 is rclpy.

ROS 1 and ROS 2 Getting help

ROS Wiki

- ▶ ROS 1 Wiki: https://wiki.ros.org/
- ▶ ROS 2 Documentation: https://docs.ros.org/en/humble/

Conclusions and Further Reading

Takeaways What do we know about ROS now?

ROS is awesome

- ▶ ROS solves basic problems in robotics.
- ▶ It helps you to get data from a node to another easily.
- ▶ ROS has a lot of graphical and command line tools.
- ▶ ROS has a very useful command line interface.
- Be aware that ROS 1 is still huge!
 - ⇒ You will get hands-on-experience in the tutorials!

Further learning Play around with ROS!

Web

- ▶ ROS 2 docs: https://docs.ros.org/en/humble/
- ▶ Books about ROS at https://wiki.ros.org/Books
- ▶ ROS forum: https://answers.ros.org/

Final Notes

Don't Panic!

- ▶ Ubuntu, ROS, Python, LATEX, git . . . So much new Software! All this in the 1st semester?!
- ▶ Robotics is a huge field with a lot of active research.
- ► This course can only give a very superficial overview.
- ► Ask questions! We are happy to help!

Next: Programming in Python