Robot Design Lab

SENSORS

M.Sc. Mihaela Popescu Robotics Innovation Center DFKI Bremen

Prof. Dr. h.c. Frank Kirchner Arbeitsgruppe Robotik, Universität Bremen https://robotik.dfki-bremen.de/ robotik@dfki.de

2nd November, 2022 - Bremen, Deutschland

Introduction to Robot Design Lab Contents

- 1 Robot Scenario
- 2 Introduction to Sensors
- 3 Robot vs. Human Sensing
- 4 Sensor Types
- 6 Challenges
- **6** Conclusion

Robot Scenario

Robot Scenario: How far can robots reach?

NASA's Perseverance rover has landed on Mars on Feb. 18, 2021 to seek signs of ancient life.

Robot Scenario

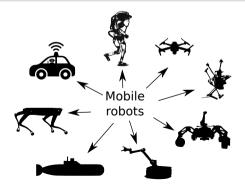
Robots for Space Exploration

Think from a NASA engineer's perspective:

- 1. How would you design the sensor suit of Perseverance?
- 2. What would you consider for ensuring long term autonomy?

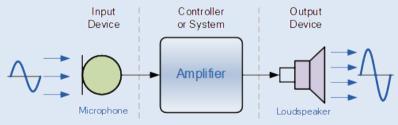
What are sensors?

Sensors are physical devices that provide information about the world.


Measuring devices that humans use.

Perception in Mobile Robots

Autonomous mobile robots rely on sensors to perceive their internal and external environment.



Link between Sensors and Actuators

- **Sensors**: sense the environment and convert its state into electrical signals.
- ▶ **Actuators**: convert electrical signals into actions as requested by the controller.

Source: https://www.electronics-tutorials.ws/io/io_1.html

Role of Perception

Perceiving the environmental state accurately is crucial for robot **long-term** autonomy and successful achievement of goals (e.g. to navigate without hitting obstacles, to avoid internal damage due to overuse).

Role of Perception

- Perceiving the environmental state accurately is crucial for robot **long-term autonomy** and successful **achievement of goals** (e.g. to navigate without hitting obstacles, to avoid internal damage due to overuse).
- ► Why is this hard?
 - Dynamic environment.
 - Only partial information about the world is available.
 - Sensors have limited range and provide noisy measurements.
 - Large quantity of information to be perceived and processed.

Role of Perception

- Perceiving the environmental state accurately is crucial for robot **long-term** autonomy and successful achievement of goals (e.g. to navigate without hitting obstacles, to avoid internal damage due to overuse).
- ▶ Why is this hard?
 - Dynamic environment.
 - Only partial information about the world is available.
 - Sensors have limited range and provide noisy measurements.
 - Large quantity of information to be perceived and processed.
- Sensors do not provide **state** directly (e.g. robot position) → raw measurements need to be processed first.

Perception Design

- ► Generally it is not a good idea to separate:
 - ▶ What the robot senses.
 - How it senses it.
 - How it processes it.
 - How it uses it.

Perception Design

- ► Generally it is not a good idea to separate:
 - What the robot senses.
 - How it senses it.
 - How it processes it.
 - How it uses it.
- ► Think of it as a single complete design:
 - ► The **task** the robot has to perform.
 - ► The best suited **sensors** for the task.
 - ► The best suited **mechanical design** that would allow the robot to get the necessary sensory information for the task (e.g. body shape, sensors placement).

Use of Sensors Data

- 1. What was the world like when the sensory reading was taken?
 - ▶ Deals with **representation and reconstruction** of the world.
- 2. Given a sensory reading, what should the robot do?
 - Deals with actions in the world.

Levels of Sensor Data Processing

There are 3 different levels at which sensor data can be processed. Let's have a look at the examples below:

- Find out if a switch is opened or closed.
 - ightharpoonup Measure voltage going through the circuit. ightharpoonup electronics
- Use a Doppler Velocity Log to compute water flow.
 - ightharpoonup Separate signal from noise, measure frequency. ightharpoonup signal processing
- Use a camera.
 - ightharpoonup Recognize objects in the image. ightharpoonup data interpretation

Levels of Sensor Data Processing

- ▶ Combination of all levels: use a microphone to recognize voice.
 - ightharpoonup Acquire signal. ightharpoonup electronics
 - ightharpoonup Separate signal from noise. ightharpoonup signal processing
 - ▶ Apply Al-algorithm to recognize voice. → data interpretation

Using A Priori Knowledge of the World

Perceptual processing can benefit if prior knowledge about the world is available.

- 1. Expectation-based perception (what to look for).
 - ▶ Prior knowledge of the world constrains the interpretation of sensor data.

Using A Priori Knowledge of the World

Perceptual processing can benefit if prior knowledge about the world is available.

- 1. Expectation-based perception (what to look for).
 - ▶ Prior knowledge of the world constrains the interpretation of sensor data.
- 2. Focus of attention methods (where to look for it).
 - ▶ Prior knowledge can constrain where things may appear.

Using A Priori Knowledge of the World

Perceptual processing can benefit if prior knowledge about the world is available.

- 1. Expectation-based perception (what to look for).
 - ▶ Prior knowledge of the world constrains the interpretation of sensor data.
- 2. Focus of attention methods (where to look for it).
 - ▶ Prior knowledge can constrain where things may appear.
- 3. Perceptual classes (how to look for it).
 - Prior knowledge constrains which types of sensing modalities are needed.

Neuroscientific Evidence

- ► Humans process information from multiple sensory modalities (vision, touch, hearing, smell, taste) using separate regions in the brain.
- ▶ Vision itself uses multiple brain regions:
 - Two main vision streams:
 - "what" (object recognition).
 - "where" (position information).
 - Pattern, color, movement, intensity, orientation.

What can we learn from biology?

- Evolved sensors have specific geometric and mechanical properties.
- Biology uses clever designs to maximize the sensor's perceptual properties, range and accuracy.
- Examples in nature:
 - ightharpoonup Flies ightharpoonup complex facetted eyes.
 - ightharpoonup Birds ightharpoonup polarized light sensors.
 - ▶ Bugs → horizon line sensors.
 - ightharpoonup Humans ightarrow complicated auditory systems.

Physical Property	Sensor	Human organ
contact	switch	skin
sound	microphone	ears
light	photocell, camera	eyes
smell (taste)	chemical	nose
temperature	thermal, infrared	skin
distance	laser scanner, ultrasonic, infrared	eyes, ears

Remark: The sensors in blue are available on the Turtebot 3 robot.

Physical Property	Sensor	Human organ
rotation	encoders, potentiometers	ears, eyes (balance)
altitude	altimeter	eyes (imprecise)
pressure	pressure gauges	ears (imprecise)
acceleration	accelerometers	eyes, ears, (stomach)
inclination	inclinometers, gyroscopes	eyes, ears
magnetism	compass, hall sensor	-

Remark: The sensors in blue are available on the Turtebot 3 robot.

- 1. Interaction with the environment:
 - ▶ **Active** sensors generate stimuli to perceive the environment.
 - ▶ Passive sensors react to stimuli from the environment.

1. Interaction with the environment:

- ▶ **Active** sensors generate stimuli to perceive the environment.
- ▶ Passive sensors react to stimuli from the environment.

2. Measurement representation:

- ▶ **Digital** sensors return discrete output (e.g. binary 0 and 1).
- ► Analogue sensors return a continuous output signal.

3. Measured system:

- ► Interoceptive sensors measure internal robot data (e.g. motor voltage and current, battery state, temperature).
- ▶ **Proprioceptive** sensors measure robot state in the environment (e.g. linear and angular position, velocity and acceleration, forces and torques).
- ► **Exteroceptive** sensors measure the environment directly (e.g. proximity sensors, camera, pressure).

Sensor Characteristics

- ▶ Range: the maximum and minimum values that can be measured by the sensor.
- ➤ **Sampling Rate**: the average number of samples measured in one second (sampling frequency).
- **Resolution**: the smallest change that can be detected.
- ► **Accuracy**: the maximum difference between the true value and the measured value.
- ▶ Quantization Error: the difference between the analog signal and the closest available digital value.

Interoceptive Sensors

quantities that describe the internal robot state (monitor hardware well-functioning)

► Battery voltage.

Battery voltage.
Motor rotation.

Battery voltage.
Motor rotation.

Power consumption.

► Battery voltage.

► Motor rotation.

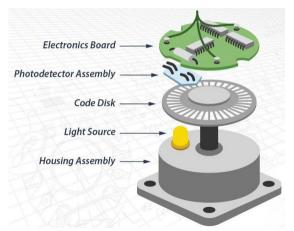
Power consumption.

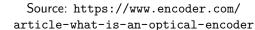
 Temperature of motors and electronics.

Proprioceptive Sensors

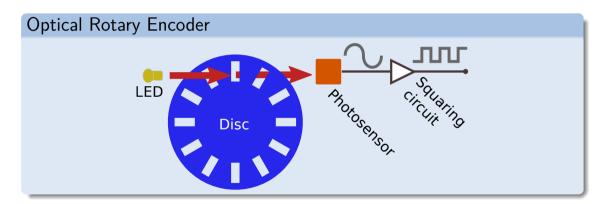
Proprioceptive Sensors

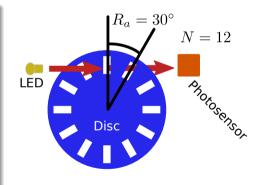
stimuli within the body that describe the robot state in the environment ¹ (latin for "one's own" or "individual")


[1] According to the American Heritage Science Dictionary, proprioception is "The unconscious perception of movement and spatial orientation arising from stimuli within the body."



Optical Rotary Encoder

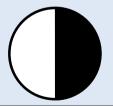

- The optical rotary encoder converts the angular position of the motor shaft to a digital code.
- ► Application: motor speed control.
- ► Remark: every wheel of the robot is actuated by a separate motor.


Proprioceptive Sensors: Wheel Encoder How can we compute the robot wheel displacement?

Distance Computation

If we know the number of ticks N of the optical encoder disc, the radius r and the circumference $c=2\pi r$ of the robot wheel, then we can compute:

$$R_a = rac{2\pi}{N}
ightarrow ext{angular resolution}$$
 $R_d = rac{c}{N}
ightarrow ext{on-ground distance resolution}$

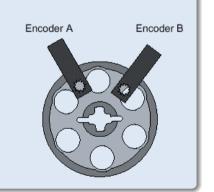


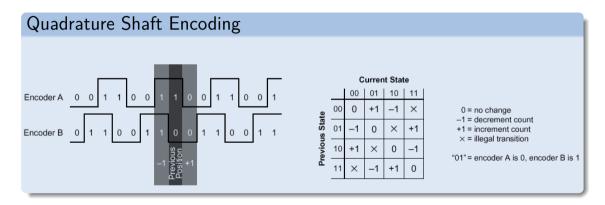
Color-Based Incremental Encoders

- ▶ Use a reflectance sensor to count the rotations.
- ▶ Black wedges absorb light, white reflect it and only reflections are counted.
- ightharpoonup Can be difficult due to wheel and gear slippage and backlash in gear trains.

Color-Based Absolute Encoders

- Provides absolute angular position with 3-bit binary resolution (2³ distinct positions).
- ▶ Black is '1' and white is '0'.
- Zero degrees is on the right-hand side, with angle increasing counterclockwise.


Standard binary encoding. http://www.drchrisbarnes.co.uk/A2.html


In which direction is the shaft moving?

- ▶ How to measure the direction of rotation:
 - ▶ Use two encoders (A and B) instead of one.
 - ▶ Align sensors to be 90 degrees out of phase.
 - Compare the outputs of both sensors at each time step with the previous time step.
 - Only one sensor changes state (on/off) at each time step, based on the direction of the shaft rotation → determines the direction of rotation.
 - Increment counter for the encoder that was on.

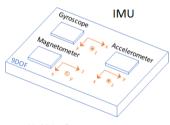
Proprioceptive Sensors: Resistive Position Sensor

Resistive Position Sensors

- Useful for contact sensing and wall-tracking.
- ▶ Electrically, the bend sensor is a simple resistance.
- ▶ The resistance of a material increases as it is bent.
- The bend sensor is less robust than a light sensor and requires strong protection at its base, near the electrical contacts.
- Unless the sensor is well-protected from direct forces, it will fail over time.

Potentiometers

- Manually-controlled variable resistor, commonly used as volume/tone control.
- Designed as a movable tab along two ends.
- ► The resistance of the sensor can be adjusted by tuning the knob.
- ▶ Application: it can be mounted on the rotating shaft of a moving part of the robot to provide angular position measurement.



Proprioceptive Sensors: Inertial Measurement Unit

Inertial Measurement Unit (IMU)

- ► Measures robot velocity and acceleration.
- ► Components:
 - ► Gyroscope (3-axis angular velocities).
 - Accelerometer (3-axis linear accelerations).
 - ► Magnetometer (3-axis magnetic field).
- Used for robot localization.
- Integrated on the OpenCR board of the Turtlebot 3 robot.

IMU Components.

Exteroceptive Sensors

Exteroceptive Sensors

stimuli that come from outside the body (environment representation)

Exteroceptive Sensors

Physical quantity	Human	Robot	Range
contact	skin	switch	proximity
sound	ears	microphone	near
distance	eyes, ears	laser scanner	mid-range
light	eyes	camera	far

Note

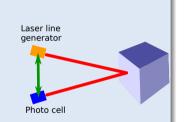
This is not very strictly defined and depends on the scenario and the environment.

Exteroceptive Sensors: Laser Scanner

Laser Scanner

- ▶ Active sensor used to measure distances to obstacles.
- ► Also known as LiDAR: **Li**ght **D**etection **A**nd **R**anging sensor.

Exteroceptive Sensors: Laser Scanner



1. Time-of-Flight (TOF) Method

- Send out one laser beam.
- ▶ Reflected beam gets detected by optical sensor.
- Calculate the distance d knowing the time of flight t_f of the beam and the speed of light c:

$$t_f = \frac{2*d}{c}$$

▶ Wide range but relatively slow (0.05 MHz).

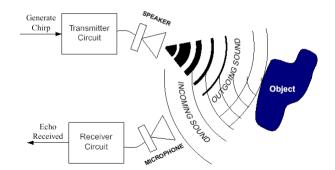
Exteroceptive Sensors: Laser Scanner

2. Phase-Shift (PS) Method

- ▶ Send out a constant beam of light with a fixed phase.
- ▶ Measure the phase of the returning laser beam.
- ► Calculate the distance d based on the signal phase shift $\Delta \phi$ and the modulation frequency F_0 :

$$\Delta \phi = 2\pi * t_f * F_0$$
, where $t_f = \frac{2 * d}{c}$.

ightharpoonup Only up to \sim 80 meters and less accurate but very fast (up to 1 MHz).



Exteroceptive Sensors: Sonar

Ultrasonic Distance Sensing

- **Sonar**: **so**und **na**vigation and **r**anging sensor.
- Based on the time-of-flight principle.

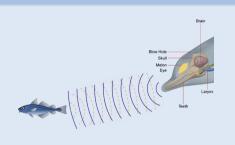
Exteroceptive Sensors: Sonar

Sonar Time-of-Flight Principle

- ► The emitter sends a "chirp" of sound.
- ▶ If the sound encounters a barrier, it reflects back to the sensor.
- ► The reflection is detected by a receiver circuit, which is tuned to the frequency of the emitter.
- ▶ Distance to objects can be computed by measuring the elapsed time between the chirp and the echo.
- ► Sound travels at about 343 m/s.

Sonar Sensor

- ► The emitter is a membrane that transforms mechanical energy into a "ping" (inaudible sound wave).
- ► The receiver is a microphone tuned to the frequency of the emitted sound.
- Applications:
 - in underwater robotics.
 - in cameras to measure the distance from the camera to the subject for auto-focus system (polaroid ultrasonic sensor).



Exteroceptive Sensors: Sonar

Echolocation

- **Echolocation**: finding location using sonar.
- Some animals use echolocation:
 - ▶ Bats: finding prey, avoid obstacles, find mates, communication with other bats.
 - Dolphins/Whales: find small fish, swim through mazes.
- Natural sensors are much more complex than artificial ones.

Toothed Whale Echolocation.

Source:

https://commons.wikimedia.org/wiki/File: Toothed_Whale_Echolocation.png

Specular Reflection

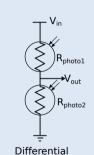
- ▶ Sound does not reflect directly and come right back.
- ► Factors to be considered:
 - Specular Reflection: the sound wave bounces off multiple sources before returning to the detector.
 - ► **Smoothness:** the smoother the surface the more likely is that the sound would bounce off.
 - ➤ Angle of Incidence: the smaller the incident angle of the sound wave the higher the probability that the sound will bounce off.

Exteroceptive Sensors: Infrared (IR) Sensor

Infrared (IR) Sensor

- ► The infrared (IR) sensor measures infrared radiation in the environment.
- ► IR radiation has higher wavelength than visible light hence it is invisible to the human eye.
- Heat is a source of infrared radiation.
- There are two types of infrared sensors:
 - Active: emit and detect infrared radiation (proximity sensor).
- Passive: detect infrared radiationUniversität(motion detection).

Pseudocolor image taken in long wavelength infrared light (body temperature).



Exteroceptive Sensors: Photocell

Photocells

- ▶ Photocells/photoresistors are used for light detection.
- Light-dependent resistor that changes its resistive value (in ohms Ω) depending on the light on the surface.
- Photocells can measure:
 - Light intensity: how bright/dark it is.
 - ▶ Differential intensity: difference between photocells.
 - Break-beams: changes in intensity.

Comparison: Photocell vs. Phototransistor

Photocells

- Easy to work with, electrically they are just resistors.
- Slow response time.
- ➤ Suitable for low frequency applications (e.g., detecting when an object is between two fingers of a robot gripper).

Reflective Optosensors (photodiode or phototransistor)

- ► Rapid response time.
- More sensitive to small levels of light, which allows the illumination source to be a simple LED element.

Exteroceptive Sensors: Camera

Camera

- ightharpoonup Camera models biological eyes ightarrow human vision.
- Provides detailed information about the environment.
- Examples of applications in robotics:
 - object detection:
 - obstacles.
 - objects to manipulate.
 - goal or destination.
 - human and face recognition.
 - mapping and localization.
 - navigation.

Intel RealSense D435 Depth Camera.

Challenges in Robot Sensing

- measurement uncertainties
- deterministic and stochastic noise
- limited measurement frequency
- poor resolution
- loss of calibration over time
- sensor failures
- insufficient storage
- multimodal data ...

Challenges in Robot Sensing

- measurement uncertainties
- deterministic and stochastic noise
- limited measurement frequency
- poor resolution
- loss of calibration over time
- sensor failures
- insufficient storage
- multimodal data ...

What can we do about it? Minimize errors using **sensor fusion**.

Sensor Fusion

- ▶ Combining multiple sensors to get better information about the world.
- ► Sensor fusion is a complex process:
 - Different modalities.
 - Contradictory information.
 - Different sampling rates (asynchronous perception).
- Methods: Kalman Filter, Particle Filter, Machine Learning, etc.

Sensor Architectures for Long-Term Autonomy

- ▶ What does **long-term** mean?
- ► There are different definitions:

 - $ightharpoonup max \left(\frac{mission time}{cost} \right)$

Sensor Architectures for Long-Term Autonomy

What does this mean for the sensors?

- Sensors have to be robust.
- ► The system has to detect sensing errors.
- Constant monitoring of the system and its environment.

Sensor Architectures for Long-Term Autonomy

What does this mean for the sensors?

- Sensors have to be robust.
- ► The system has to detect sensing errors.
- ▶ Constant monitoring of the system and its environment.

What does this mean for sensor processing?

- Lots of sensors with different modalities.
- Increased demand of:
 - spatial resolution.
 - sensitivity.
 - sampling rate.
 - computing power.

Back to the initial questions!

1. How would you design the sensor suit of Perseverance?

Back to the initial questions!

- 1. How would you design the sensor suit of Perseverance?
 - Proprioceptive and interoceptive sensors to monitor the robot state.
 - Exteroceptive sensors to inspect the soil.
 - ▶ Multi-modal sensor system for a good knowledge of the environment.

Back to the initial questions!

2. What would you consider for ensuring long-term autonomy?

Back to the initial questions!

- 2. What would you consider for ensuring long-term autonomy?
 - ▶ More sensors to increase robustness (e.g. more cameras, different sensors to monitor the environment conditions).
 - Mechanisms to detect errors and sensor failures.
 - More computing power to cope with future changes in the mission plan.
 - Use a second robot (e.g. NASA's Ingenuity helicopter accompanies Perseverance rover on Mars).

References

Additional Literature

Springer Handbook of Robotics (English)

► Chapter 4.2: Sensors

Source: https://link.springer.com/referencework/ 10.1007%2F978-3-540-30301-5 Mobile Roboter (German)

► Chapter 2: Sensorik

Source: https://link.springer.com/book/10.1007/ 978-3-642-01726-1

Next: Robot Odometry