#### **Robot Design Lab**



#### **ROBOT MAPPING**

M. Sc. Mihaela Popescu Robotics Innovation Center DFKI Bremen

Prof. Dr. h.c. Frank Kirchner Arbeitsgruppe Robotik, Universität Bremen https://robotik.dfki-bremen.de/ robotik@dfki.de 16th November, 2022 - Bremen, Deutschland





# Introduction to Robot Design Lab Contents



- 1 Introduction
- 2 Types of Maps
- 3 Sensors for Mapping
- 4 Occupancy Grid Maps
- 5 Statistics Excursion: Bayes' Theorem
- 6 Mapping Algorithm
- 7 Mapping Libraries for ROS2
- 8 Conclusion





#### Mapping and Localization

Mobile robots are able to navigate through the environment.

In order to perform navigation, robots first need to answer two questions:

- "How does the world look like?"
- "Where am I in this world?"
- $\rightarrow$  Solving the two problems in the same time is known as Simultaneous Localization and Mapping **(SLAM)**.







### What is Mapping?

Map = model of the environment

In order to perform mapping, the robot:

- navigates through the workspace.
- collects sensor data (laser scanner, camera).
- ▶ fuses the sensor measurements over time.
- generates a map of the environment.





#### Why Do Robots Need Mapping?

Autonomous mobile robots perform complex tasks for which detailed information about the environment is required.

Robot mapping is needed for the following tasks:

- localization of the robot in a given map.
- ▶ path planning from the current robot position to a goal position in the map.
- ▶ autonomous navigation in the environment.





#### **Robot Applications**

Mapping is essential for autonomous mobile robotic platforms such as:

- self-driving cars
- automated forklifts in warehouses
- robotic vacuum cleaners
- humanoid robots
- drones etc.



Turtlebot 2



Quadcopter



Pepper Robot



KITTI Vehicle





#### Maps for Human vs. Robot Use

For human purpose, we are used to various types of maps such as:

- ► Satellite map.
- Geographical maps.
- Political maps.





#### Maps for Human vs. Robot Use

For human purpose, we are used to various types of maps such as:

- ► Satellite map.
- Geographical maps.
- ► Political maps.

In robotics there are different maps:

- Grid maps (show if the environment is free or occupied).
- **Feature maps** (mark the location of obstacles and objects in the world).





#### Grid maps

- ► **Geometric model** of the environment.
- ▶ The 2D world plane is divided into **grid cells**.
- Map cells can be free or occupied.
- ▶ The robot can only navigate in the free cells.
- lt is a **dense** representation of the world.
- Suitable for indoor environments.





Courtesy: D. Hähnel

Dense grid map.





#### Feature-based maps

- The environment is represented by a set of observed features.
- Features are obstacles in the world identified by sensor readings (e.g. laser scanner, camera).
- ► The robot navigates based on the distance and heading w.r.t. the features in the map.
- ▶ It is a **sparse** representation of the world.
- Suitable for outdoor environments.



Courtesy: E. Nebot

Feature-based map.





### Types of Mapping

- ► **Grid mapping**: we can generally use any type of sensor that provides **depth** information about the environment.
- ► Feature-based mapping: we can use sensor data that provides information about the obstacles in the world.





### Types of Mapping

- ► **Grid mapping**: we can generally use any type of sensor that provides **depth** information about the environment.
- ► Feature-based mapping: we can use sensor data that provides information about the obstacles in the world.

#### Sensors Used

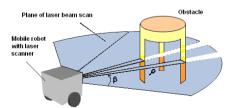
- Proximity sensors:
  - Laser scanner.
  - Ultrasonic sensor.
  - Infrared sensor.
- Stereo vision:
  - Camera.





#### Recap: Phase-based Principle of 2D Laser Scanner

- ▶ Sensor emits a continuous laser beam at predefined frequency.
- ▶ Rotating mirror shifts the beam with small angle increments.
- Laser beam is reflected back by obstacles.
- ▶ Phase shift between emitted and reflected laser beams is proportional to the distance to obstacle.

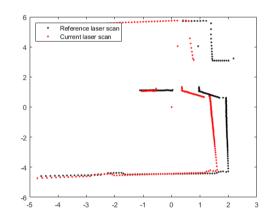






#### Scan Matching Algorithm

- Incrementally align two consecutive laser scanner measurements.
- Stitch the laser scans to create a map.
- The transformation between two measurements is used in robot localization.
- ► E.g. Iterative Closest Point.



Scan matching of previous and current laser scan.



Source: https://www.mathworks.com/help/nav/ug/estimate-robot-pose-with-scan-matching.html



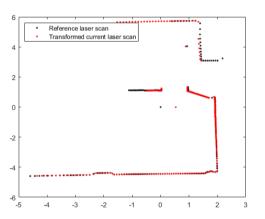
#### Iterative Closest Point (ICP)

- ▶ Minimizes the distance between two point clouds.
- ► Algorithm:
  - 1. For each point in the source point cloud, match the closest point in the reference point cloud.
  - 2. Estimate the combination of rotation and translation between the two point clouds minimizing the root mean square point to point distance.

    Optional: weight points and reject outliers prior to alignment.
  - 3. Transform the source points using the obtained transformation in Step 2.
  - 4. Iterate again from Step 1.







Aligned laser scans using a scan matching algorithm.



Source: https://www.mathworks.com/help/nav/ug/estimate-robot-pose-with-scan-matching.html



#### Loop Closure

- Loop closing is the task of deciding whether the robot has returned to a previously visited area.
- Used in SLAM to correct the drift in mapping and localization.
- Approach: identify features that have been perceived in the past.
- When a match (i.e. loop closure) is detected, update the previous map and position estimates.

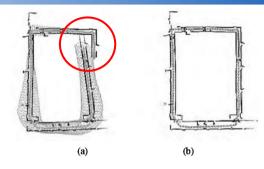


Figure – The role of SLAM loop closure:
a) errors increasing before loop closure;
b) mapping and localization drift is corrected after closing the loop.





#### Approach

- ▶ Divide the world into grid cells.
- ► Each cell is either free or occupied.
- ▶ Discrete representation of the environment.







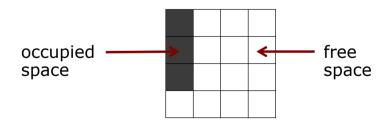
MIT CSAIL building





#### Cell Representation

- ▶ Binary cells (either free or occupied).
- ► Probabilistic cells (certain degree of occupancy).





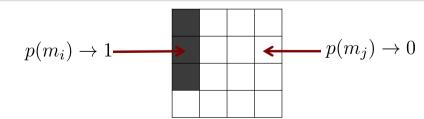


#### Probabilistic Occupancy

The cell occupancy is modelled by a binary random variable.

Map occupancy probabilities:

- Free cell:  $p(m_i) = 0$
- ▶ Occupied cell:  $p(m_i) = 1$
- No knowledge:  $p(m_i) = 0.5$





#### Mapping with Known Poses

Create a map of the environment using:

- ▶ Sensor measurements  $z_i$  → laser scanner.
- ▶ Robot poses  $x_i$  → wheel odometry.





#### Mapping with Known Poses

Create a map of the environment using:

- ▶ Sensor measurements  $z_i$  → laser scanner.
- ightharpoonup Robot poses  $x_i \rightarrow$  wheel odometry.

The probability distribution of the map is the product of all individual cell probabilities:

$$p(\mathbf{m}|z_{1:t},x_{1:t}) = \prod_{i} p(m_{i}|z_{1:t},x_{1:t})$$





#### Mapping with Known Poses

Create a map of the environment using:

- ightharpoonup Sensor measurements  $z_i o$ laser scanner.
- ▶ Robot poses  $x_i$  → wheel odometry.

The probability distribution of the map is the product of all individual cell probabilities:

$$p(\mathbf{m}|z_{1:t},x_{1:t}) = \prod_{i} p(m_{i}|z_{1:t},x_{1:t})$$

#### Assumptions

- Cells are independent of each other.
- Range measurement  $z_t$  only depends on current robot pose  $x_t$  (Markov property).





#### Bayes' Theorem

- ▶ Rule that describes the probability of an event to happen based on previous knowledge of related conditions.
- ▶ Remark: probabilities can only take values between 0 and 1.
- Example:

$$P(rain|cloud) = \frac{P(cloud|rain)P(rain)}{P(cloud)}$$





#### Bayes' Theorem Formal Definition

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

P(A|B): probability of hypothesis A given data B (**posterior** belief distribution)

P(B|A): likelihood of data B given hypothesis A

P(A): independent probability of hypothesis A

(prior belief distribution)

P(B): independent probability of data B





#### Bayes Filter

■ Bayes Filter: Probabilistic method to estimate an unknown probability density function (PDF) recursively over time using incoming sensor measurements and a mathematical process model.





#### Bayes Filter

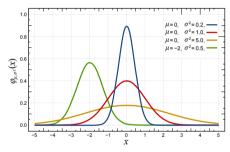
- Bayes Filter: Probabilistic method to estimate an unknown probability density function (PDF) recursively over time using incoming sensor measurements and a mathematical process model.
- ▶ **Binary Bayes Filter**: Probability density function (PDF) of a binary variable.





#### Bayes Filter

- ▶ Bayes Filter: Probabilistic method to estimate an unknown probability density function (PDF) recursively over time using incoming sensor measurements and a mathematical process model.
- ▶ **Binary Bayes Filter**: Probability density function (PDF) of a binary variable.



PDF of Gaussian distributions with different mean and variance.

Source: https://en.wikipedia.org/wiki/ Normal\_distribution.





#### Binary Bayes Filter

Let's write the Bayes Filter equation for estimating the cell occupancy probabilities  $p(m_i)$  using the Bayes' theorem and Markov property:

$$\frac{p(m_i|z_{1:t},x_{1:t})}{1-p(m_i|z_{1:t},x_{1:t})}$$





#### Binary Bayes Filter

Let's write the Bayes Filter equation for estimating the cell occupancy probabilities  $p(m_i)$  using the Bayes' theorem and Markov property:

$$\frac{p(m_i|z_{1:t},x_{1:t})}{1-p(m_i|z_{1:t},x_{1:t})} = \underbrace{\frac{p(m_i|z_t,x_t)}{1-p(m_i|z_t,x_t)}}_{\text{new measurement}} \underbrace{\frac{p(m_i|z_{1:t},x_{1:t})}{1-p(m_i|z_{1:t-1},x_{1:t-1})}}_{\text{recursive term}} \underbrace{\frac{1-p(m_i)}{p(m_i)}}_{\text{prior}}$$





### Binary Bayes Filter

Apply log for easier computations (product becomes sum):

$$\underbrace{I(m_i|z_{1:t},x_{1:t})}_{\text{posterior}} = \underbrace{I(m_i|z_t,x_t)}_{\text{inverse sensor model}} + \underbrace{I(m_i|z_{1:t-1},x_{1:t-1})}_{\text{recursive term}} - \underbrace{I(m_i)}_{\text{prior}}$$





#### Occupancy Grid Mapping Algorithm

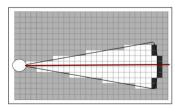
```
1:
          Algorithm occupancy_grid_mapping(\{l_{t-1,i}\}, x_t, z_t):
               for all cells \mathbf{m}_i do
2:
3:
                   if \mathbf{m}_i in perceptual field of z_t then
                       l_{t,i} = l_{t-1,i} + inverse\_sensor\_model(\mathbf{m}_i, x_t, z_t) - l_0
4:
5:
                   else
6:
                       l_{t,i} = l_{t-1,i}
                                                     Binary Bayes' Filter
7:
                   endif
8:
               endfor
9:
               return \{l_{t,i}\}
```





## Cell Occupancy

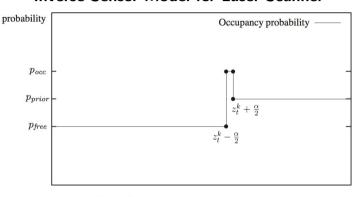
- p\_occupied
- p\_prior (unchanged)
- p\_free



Optical axis of the laser scanner.

#### Universität Bremen

#### Inverse Sensor Model for Laser Scanner



distance between sensor and cell under consideration

Source: Robot Mapping - Grid Maps Lecture, prof. Burgard, Uni Freiburg.



#### **Inverse Sensor Model Algorithm**

```
1:
            Algorithm inverse_range_sensor_model(m_i, x_t, z_t):
                 Let x_i, y_i be the center-of-mass of \mathbf{m}_i
                 r = \sqrt{(x_i - x)^2 + (y_i - y)^2}
                 \phi = \operatorname{atan2}(y_i - y, x_i - x) - \theta
                 k = \operatorname{argmin}_{i} |\phi - \theta_{i,\text{sens}}|
                 if r > \min(z_{\text{max}}, z_t^k + \alpha/2) or |\phi - \theta_{k,\text{sens}}| > \beta/2 then
6:
                       return l_0
                 if z_t^k < z_{\text{max}} and |r - z_t^k| < \alpha/2
9:
                       return l_{occ}
                 if r < z_t^k
10:
11:
                       return l_{\text{free}}
12:
                 endif
```





#### **Inverse Sensor Model Algorithm**

```
Algorithm inverse range sensor model(m_i, x_t, z_t):
1:
              Let x_i, u_i be the center-of-mass of \mathbf{m}_i
              r = \sqrt{(x_i - x)^2 + (y_i - y)^2}
              \phi = \operatorname{atan2}(u_i - u, x_i - x) - \theta
              k = \operatorname{argmin}_{i} |\phi - \theta_{i,\text{sens}}|
              if r > \min(z_{\text{max}}, z_t^k + \alpha/2) or |\phi - \theta_{k,\text{sens}}| > \beta/2 then
6:
                  return l_0 — prior probability (unchanged)
              if z_t^k < z_{\max} and |r - z_t^k| < \alpha/2
                  return l_{occ} probability to be occupied
10:
              if r < z_t^k
11:
                  return l_{\text{free}} probability to be free
12:
              endif
```





#### **Parameters**

- $\triangleright x_t = \text{robot pose } [x \ y \ \theta]^T$
- $\triangleright$   $x_i, y_i = \text{center coordinates of cell } m_i$
- $ightharpoonup r = range of cell <math>m_i$  (distance from robot)
- $ightharpoonup \phi = \text{orientation of cell } m_i$
- $\triangleright$  k =laser beam index intersecting cell  $m_i$
- $ightharpoonup z_t^k = \text{detected range by beam } k$
- $\bullet$   $\theta_{k,sens}$  = orientation of  $k^{th}$  laser beam
- $ightharpoonup \alpha = \text{obstacle thickness}$
- $\triangleright \beta = \text{angle increment between scans}$
- $ightharpoonup z_{max} = maximum laser measurement range$





## 1. SLAM Gmapping

- ▶ Published by Uni Freiburg (Prof. Wolfram Burgard) in 2007.
- It creates a 2D occupancy grid map from laser range-finder and odometry.
- ▶ Posterior distribution estimated using efficient Rao-Blackwellized particle filter.
- Performs loop closure.
- Link: http://wiki.ros.org/gmapping





## 1. SLAM Gmapping

Map properties that can be defined:

- ► Initial size of the map (x and y in m).
- Resolution of the map (cell size in m).
- ▶ Maximum range of the laser scanner measurement.
- Cell occupancy threshold.
- ightharpoonup Number of particles. ightharpoonup Particle filter in Localization lecture.





#### 2. Hector SLAM

- ▶ Published by TU Darmstadt in 2011.
- lt performs fast online learning of occupancy grid maps.
- ► Low computational resources.
- Uses Lidar and IMU data, but no odometry.
- SLAM without loop closure.
- ► Link: http://wiki.ros.org/hector\_slam





## 3. Cartographer

- ▶ Published by Google Research in 2016.
- lt works with a variety of sensor configurations (e.g. Lidar, IMU, cameras).
- lt implements the scan matching algorithm.
- It performs local and global SLAM (loop closure).
- Link: http://wiki.ros.org/cartographer





#### 4. SLAM Toolbox

- ▶ Published by Steve Macenski et al. in 2021 and is currently the supported ROS localization and mapping package.
- Maps large and dynamic spaces.
- ▶ Able to continue mapping from prior sessions.
- Implements loop closure.
- ► Link: http://wiki.ros.org/slam\_toolbox





#### 4. SLAM Toolbox







## Challenges in Robot Mapping

- Modeling sensor errors.
- ▶ Dimension of the environment.
- Data association.
- Multiple sensor modalities.
- Dynamics in the environment.
- Exploration strategy.





#### Collaborative Mapping

- ▶ Use more robots to explore a larger surface faster.
- ▶ Merge the maps generated by multiple robots into a global map.
- ▶ Wireless communication for data exchange between robots.





## Collaborative Mapping

- ▶ Use more robots to explore a larger surface faster.
- ▶ Merge the maps generated by multiple robots into a global map.
- Wireless communication for data exchange between robots.
- Example:
  - ▶ ROS package for coordinated multi-robot mapping developed by the University of Klagenfurt, Austria.
  - ► Tested with Turtlebot (equipped with Kinect sensor) and Pioneer 3-DX (equipped with laser range scanner) robots.





## Collaborative Mapping

# Distributed Multi-Robot **Exploration**



Coordinated Multi-Robot Exploration: Out of the Box Packages for ROS.

Source: https://bettstetter.com/collaborative-mapping-with-mobile-robot-teams/



## Summary

► What is mapping?





- ▶ What is mapping?
- ► Types of maps for robotics.





- What is mapping?
- ► Types of maps for robotics.
- ► Sensors for mapping.





- What is mapping?
- ► Types of maps for robotics.
- ► Sensors for mapping.
- Scan matching algorithm.





- What is mapping?
- Types of maps for robotics.
- Sensors for mapping.
- Scan matching algorithm.
- Occupancy grid maps principle and algorithm.





- ▶ What is mapping?
- Types of maps for robotics.
- Sensors for mapping.
- Scan matching algorithm.
- Occupancy grid maps principle and algorithm.
- Bayes' theorem for probabilistic mapping.





- ▶ What is mapping?
- ► Types of maps for robotics.
- Sensors for mapping.
- Scan matching algorithm.
- Occupancy grid maps principle and algorithm.
- Bayes' theorem for probabilistic mapping.
- Mapping libraries available in ROS2.





- ▶ What is mapping?
- Types of maps for robotics.
- Sensors for mapping.
- Scan matching algorithm.
- Occupancy grid maps principle and algorithm.
- Bayes' theorem for probabilistic mapping.
- Mapping libraries available in ROS2.
- Challenges.





- What is mapping?
- ► Types of maps for robotics.
- Sensors for mapping.
- Scan matching algorithm.
- Occupancy grid maps principle and algorithm.
- Bayes' theorem for probabilistic mapping.
- Mapping libraries available in ROS2.
- Challenges.
- ► Collaborative mapping.

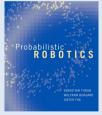




#### Additional Literature

Probabilistic Robotics, Thrun et al.

► Chapters 9.1, 9.2.



Source: https://docs.ufpr.br/~danielsantos/ ProbabilisticRobotics.pdf Robot Mapping Course, Uni Freiburg

Occupancy Grid Maps

**Robot Mapping** 

**Grid Maps** 

Gian Diego Tipaldi, Luciano Spinello, Wolfram Burgard

Source: http://ais.informatik.uni-freiburg.de/teaching/ws14/mapping/pdf/slam10-gridmaps.pdf

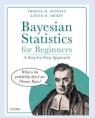




#### Additional Literature

Bayesian Statistics for Beginners: a step-by-step approach.

► Chapter 3: Bayes' Theorem



Source: https://oxford.universitypressscholarship.com/view/10.1093/ oso/9780198841296.001.0001/oso-9780198841296



# Next: Localization.