Robot Design Lab

INTRODUCTION TO TASK PLANNING

Dr. Teena Hassan Robotics Innovation Center DFKI Bremen

Prof. Dr. h.c. Frank Kirchner Arbeitsgruppe Robotik, Universität Bremen https://robotik.dfki-bremen.de/ robotik@dfki.de 13th January, 2022 - Bremen, Deutschland

Contents Introduction to Task Planning

- 1 Task Planning An Example Scenario
- 2 Key Terms in Task Planning
- 3 Task Planning versus Path Planning
- 4 References

Task Planning – An Example Scenario

Task Planning in Real-Life An Example

Scenario: Christmas is less than a week away and you realised that you forgot to get a gift for a friend who lives in another city. There is a souvenir-cum-book shop and a post office near your home. What would you do?

Task Planning in Real-Life An Example

Scenario: Christmas is less than a week away and you realised that you forgot to get a gift for a friend who lives in another city. There is a souvenir-cum-book shop and a post office near your home. What would you do?

- 1. **Go** to the shop.
- 2. **Select** the *gift*.
- 3. **Purchase** the *gift*.
- 4. **Bring** the *gift* home.
- 5. Pack the gift.
- 6. Label the package.
- 7. **Bring** the *package* to post office.
- 8. Hand-over the package for shipment.

Key Terms in Task Planning

What was your ultimate objective or goal in the previous example?

What was your ultimate objective or **goal** in the previous example?

▶ To send a Christmas gift to a friend who lives in another city.

What was your ultimate objective or **goal** in the previous example?

- ▶ To send a Christmas gift to a friend who lives in another city.
- ► In other words, you want the condition 'Christmas-gift-has-been-sent-to-the-friend' to become true.

What was your ultimate objective or goal in the previous example?

- ▶ To send a Christmas gift to a friend who lives in another city.
- ► In other words, you want the condition 'Christmas-gift-has-been-sent-to-the-friend' to become true.

What did you do to achieve this goal?

What was your ultimate objective or **goal** in the previous example?

- ▶ To send a Christmas gift to a friend who lives in another city.
- ► In other words, you want the condition 'Christmas-gift-has-been-sent-to-the-friend' to become true.

What did you do to achieve this goal?

▶ You performed a sequence of actions which at the end fulfilled your goal.

What was your ultimate objective or **goal** in the previous example?

- ▶ To send a Christmas gift to a friend who lives in another city.
- ► In other words, you want the condition 'Christmas-gift-has-been-sent-to-the-friend' to become true.

What did you do to achieve this goal?

- ▶ You performed a sequence of actions which at the end fulfilled your goal.
- ► That is, you executed a **plan** to make the **goal condition** 'Christmas-gift-has-been-sent-to-the-friend' **become true**.

- 1. **Go** to the shop.
- 2. **Select** the *gift*.
- 3. Purchase the gift.
- 4. **Bring** the *gift* home.
- 5. Pack the gift.
- 6. Label the package.
- 7. **Bring** the *package* to post office.
- 8. **Hand-over** the *package* for shipment.

- ► The action names are shown in bold font.
- The objects to which these actions are applied are shown in italics.
- The <u>locations</u> to which the agent moves are underlined.

➤ Your world consists of yourself (the agent), certain objects (gift, package) and a set of locations (home, shop, post office).

- ➤ Your world consists of yourself (the agent), certain objects (gift, package) and a set of locations (home, shop, post office).
- ► Each of these elements has a set of properties associated with it. For example,
 - Where is an object located?
 - Is the post office open?
 - Is the gift packed?

- ➤ Your world consists of yourself (the agent), certain objects (gift, package) and a set of locations (home, shop, post office).
- ► Each of these elements has a set of properties associated with it. For example,
 - Where is an object located?
 - Is the post office open?
 - ► Is the gift packed?
- These properties can be specified as conditions which can be either true or false.

- ➤ Your world consists of yourself (the agent), certain objects (gift, package) and a set of locations (home, shop, post office).
- ▶ Each of these elements has a set of properties associated with it. For example,
 - Where is an object located?
 - Is the post office open?
 - Is the gift packed?
- These properties can be specified as conditions which can be either true or false.
- ▶ The set of all such conditions describes the **state** of the world.

Task Planning Example What is an Action?

- ► Through actions, the **state** of the world can be changed (**effects**). For example,
 - ▶ When you bring the gift home, the location of the gift changes from shop to home.

Task Planning Example What is an Action?

- ➤ Through actions, the **state** of the world can be changed (**effects**). For example,
 - ▶ When you bring the gift home, the location of the gift changes from shop to home.
- Actions can be performed only in specific states that statisfy certain preconditions. For example,
 - ▶ The package can be labeled only after the gift is packed.
 - ▶ The gift can be packed only after it has been purchased and brought home.

Task Planning Example What is an Action?

- Through actions, the state of the world can be changed (effects). For example,
 - ▶ When you bring the gift home, the location of the gift changes from shop to home.
- Actions can be performed only in specific states that statisfy certain preconditions. For example,
 - ▶ The package can be labeled only after the gift is packed.
 - ▶ The gift can be packed only after it has been purchased and brought home.
- ▶ The effects of some actions make other actions possible.

Task Planning versus Path Planning

▶ The scenario described a **problem** which you had to solve.

- ► The scenario described a **problem** which you had to solve.
- ► Solving the problem was your **task**.

- ► The scenario described a **problem** which you had to solve.
- Solving the problem was your task.
- ▶ The solution to the problem should satisfy a **goal** condition.

- ► The scenario described a **problem** which you had to solve.
- Solving the problem was your task.
- ▶ The solution to the problem should satisfy a **goal** condition.
- ▶ You came up with a **plan** to satisfy the goal.

- ► The scenario described a **problem** which you had to solve.
- Solving the problem was your task.
- ▶ The solution to the problem should satisfy a **goal** condition.
- You came up with a plan to satisfy the goal.
- ▶ The plan is a sequence of **actions** that can be performed in the **world**.

- ▶ The scenario described a **problem** which you had to solve.
- Solving the problem was your task.
- ▶ The solution to the problem should satisfy a **goal** condition.
- You came up with a plan to satisfy the goal.
- The plan is a sequence of actions that can be performed in the world.
- ► The **state** describes the relevant properties of all things in the world.

- ▶ The scenario described a **problem** which you had to solve.
- Solving the problem was your task.
- ▶ The solution to the problem should satisfy a **goal** condition.
- You came up with a plan to satisfy the goal.
- The plan is a sequence of actions that can be performed in the world.
- ▶ The **state** describes the relevant properties of all things in the world.
- ▶ An action can be performed only if its **preconditions** are satisfied in the current state.

- ▶ The scenario described a **problem** which you had to solve.
- ► Solving the problem was your task.
- ▶ The solution to the problem should satisfy a **goal** condition.
- ▶ You came up with a **plan** to satisfy the goal.
- The plan is a sequence of actions that can be performed in the world.
- ▶ The **state** describes the relevant properties of all things in the world.
- An action can be performed only if its **preconditions** are satisfied in the current state.
- ▶ When an action is performed, it has an **effect** on the state.

Task Planning versus Path Planning A Comparison

Criteria	Path Planning	Task Planning
Input	Initial pose (position, orientation)	Initial state (a set of conditions)
Input	Goal pose	Goal (a set of conditions)
Input	Global map	Planning domain (objects, conditions, actions)
Output	Globally optimal path (sequence of poses)	Plan (sequence of actions) that changes the initial state into a state that satisfies the goal
Sensing	Current pose	Current state
Execution	Obstacle avoidance	Applicability of actions

Task Planning: Definition What Does it Deal with?

Task planning deals with...

Given a planning domain, the initial state, and the goal, how can the robot autonomously find a plan, i.e. a sequence of actions, in order to go from the initial state to a state that satisfies the goal?

Algorithms that do this are called **planners**.

Task Planning More Examples from Everyday Life

Cook a meal

Move to a new house

Build a tower

Fun exercise: Formulate plans for tasks related to these scenarios.

References

References Task Planning

Automated Planning: Theory & Practice (English)

- Chapter 2: Representations for Classical Planning
- Chapter 4: State-Space Planning

Author's lecture slides: https: //www.cs.umd.edu/~nau/planning/slides/

References Task Planning

Artificial Intelligence:

A Modern Approach (English)

- ► Chapter 11.1: The Planning Problem
- Chapter 11.2: Planning with State-Space Search

//aima.cs.berkeley.edu/newchap11.pdf

Next Part – Task Planning: Representation and Algorithms