v∈V∑deg(v)=2∣E∣
Prroving stuff
multinomial coeffcients


Link to original
multinomial therom
(x1+x2+...+xt)n=k1+k2+...+kt=n∑(k1,k2,...,ktn)⋅x1k1⋅x2k2⋅...⋅xtkt
(rm+n)=k=0∑r(km)(r−kn)
((...,k1,k0)p(...,n1,n0)p)≡((...,k2,k1)p(...,n2,n1)p)(k0n0)≡...≡∏(kini)
(kn)=∏(kn)mod2
| A_{1} \cup \cdots \cup A_{k}| =
\\ &
+ |A_{1}| + \cdots +|A_{k}|
\\ &
- |A_{1} \cap A_{2}|
- |A_{1} \cap A_{3}|
- ...
\\ &
+ |A_{1} \cap A_{2} \cap A_{3}|
+ |A_{1} \cap A_{2} \cap A_{4}|
+ ...
\\ &
...
\end{split}
dn=n!(0!1−1!1+2!1−3!1+...+(−1)nn!1)
Rekursive Reihen
s(n+1,k)=ns(n,k)+s(n−2,k−1)
s~(n,k):=(−1)n−ks(n,k)=∣s(n,k)∣
S(n+1,k)=kS(n,k)+S(n,k−1)
S(n,0)= {0 1 if n=0 if n=0
S(n,k)=0 if k>n
S(n,k)=k!1j<1∑k(−1)k−j(jk)⋅jn
Bn=k=0∑nS(n,k)
B^n=k=0∑nk!S(n,k)
α(n,k)=j=1∑k(−1)k−j(jk)jn